BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25715587)

  • 1. [Silver nanoparticles induce lipid peroxidation and morphological changes in human lymphocytes surface].
    Zhornik EV; Baranova LA; Drozd ES; Sudas MS; Chau NH; Buu NQ; Dung TT; Chizhik SA; Volotovskiĭ ID
    Biofizika; 2014; 59(3):466-73. PubMed ID: 25715587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver Nanoparticles Induce Changes in the Structural and Functional Properties of Human Lymphocytes.
    Nakvasina MA; Koltakov IA; Artyukhov VG
    Bull Exp Biol Med; 2021 Feb; 170(4):499-504. PubMed ID: 33725250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxic effect of environmentally relevant concentration of silver nanoparticles on environmentally beneficial bacterium Pseudomonas putida.
    Khan SS; Ghouse SS; Chandran P
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1243-9. PubMed ID: 25627470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-mediated formation and charging of silver nanoparticles.
    Jones AM; Garg S; He D; Pham AN; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1428-34. PubMed ID: 21265570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells.
    Castiglioni S; Cazzaniga A; Perrotta C; Maier JA
    Toxicol Lett; 2015 Sep; 237(3):237-43. PubMed ID: 26149761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size of silver nanoparticles determines proliferation ability of human circulating lymphocytes in vitro.
    Joksić G; Stašić J; Filipović J; Šobot AV; Trtica M
    Toxicol Lett; 2016 Apr; 247():29-34. PubMed ID: 26892717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes.
    Vergallo C; Panzarini E; Tenuzzo BA; Mariano S; Tata AM; Dini L
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.
    Dayem AA; Kim B; Gurunathan S; Choi HY; Yang G; Saha SK; Han D; Han J; Kim K; Kim JH; Cho SG
    Biotechnol J; 2014 Jul; 9(7):934-43. PubMed ID: 24827677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells.
    Setyawati MI; Yuan X; Xie J; Leong DT
    Biomaterials; 2014 Aug; 35(25):6707-15. PubMed ID: 24881025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings.
    Nair PM; Chung IM
    Chemosphere; 2014 Oct; 112():105-13. PubMed ID: 25048895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles.
    Park MV; Neigh AM; Vermeulen JP; de la Fonteyne LJ; Verharen HW; Briedé JJ; van Loveren H; de Jong WH
    Biomaterials; 2011 Dec; 32(36):9810-7. PubMed ID: 21944826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2.
    Böhmert L; Niemann B; Thünemann AF; Lampen A
    Arch Toxicol; 2012 Jul; 86(7):1107-15. PubMed ID: 22418598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles.
    Yang EJ; Kim S; Kim JS; Choi IH
    Biomaterials; 2012 Oct; 33(28):6858-67. PubMed ID: 22770526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals.
    Hwang IS; Lee J; Hwang JH; Kim KJ; Lee DG
    FEBS J; 2012 Apr; 279(7):1327-38. PubMed ID: 22324978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.
    Stevanović M; Bračko I; Milenković M; Filipović N; Nunić J; Filipič M; Uskoković DP
    Acta Biomater; 2014 Jan; 10(1):151-62. PubMed ID: 23988864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear enhancement of spontaneous biophoton emission of sweet potato by silver nanoparticles.
    Hossu M; Ma L; Chen W
    J Photochem Photobiol B; 2010 Apr; 99(1):44-8. PubMed ID: 20207158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions.
    Guo D; Zhu L; Huang Z; Zhou H; Ge Y; Ma W; Wu J; Zhang X; Zhou X; Zhang Y; Zhao Y; Gu N
    Biomaterials; 2013 Oct; 34(32):7884-94. PubMed ID: 23876760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells.
    Sharma S; Chockalingam S; Sanpui P; Chattopadhyay A; Ghosh SS
    Adv Healthc Mater; 2014 Jan; 3(1):106-14. PubMed ID: 23852919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [ROS induction and structural modification in human lymphocyte membrane under the influence of carbon nanotubes].
    Zhornik EV; Baranova LA; Strukova AM; Loĭko EN; Volotovskiĭ ID
    Biofizika; 2012; 57(3):446-53. PubMed ID: 22873068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.