BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25715702)

  • 21. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The human erythrocyte sugar transporter is also a nucleotide binding protein.
    Carruthers A; Helgerson AL
    Biochemistry; 1989 Oct; 28(21):8337-46. PubMed ID: 2532542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nicotinamide is not a substrate of the facilitative hexose transporter GLUT1.
    Reyes AM; Bustamante F; Rivas CI; Ortega M; Donnet C; Rossi JP; Fischbarg J; Vera JC
    Biochemistry; 2002 Jun; 41(25):8075-81. PubMed ID: 12069599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1.
    Hebert DN; Carruthers A
    J Biol Chem; 1992 Nov; 267(33):23829-38. PubMed ID: 1429721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of glucose transporter topology and structural dynamics.
    Blodgett DM; Graybill C; Carruthers A
    J Biol Chem; 2008 Dec; 283(52):36416-24. PubMed ID: 18981181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter.
    Halmos T; Santarromana M; Antonakis K; Scherman D
    Eur J Pharmacol; 1996 Dec; 318(2-3):477-84. PubMed ID: 9016941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.
    Mori H; Hashiramoto M; Clark AE; Yang J; Muraoka A; Tamori Y; Kasuga M; Holman GD
    J Biol Chem; 1994 Apr; 269(15):11578-83. PubMed ID: 8157690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1.
    Vera JC; Reyes AM; Cárcamo JG; Velásquez FV; Rivas CI; Zhang RH; Strobel P; Iribarren R; Scher HI; Slebe JC
    J Biol Chem; 1996 Apr; 271(15):8719-24. PubMed ID: 8621505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular determinants of sugar transport regulation by ATP.
    Levine KB; Cloherty EK; Hamill S; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12629-38. PubMed ID: 12379105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.
    Brekkan E; Lundqvist A; Lundahl P
    Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GLUT1 transmembrane glucose pathway. Affinity labeling with a transportable D-glucose diazirine.
    Lachaal M; Rampal AL; Lee W; Shi Y; Jung CY
    J Biol Chem; 1996 Mar; 271(9):5225-30. PubMed ID: 8617806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The differential role of Cys-421 and Cys-429 of the Glut1 glucose transporter in transport inhibition by p-chloromercuribenzenesulfonic acid (pCMBS) or cytochalasin B (CB).
    Wellner M; Monden I; Keller K
    FEBS Lett; 1992 Sep; 309(3):293-6. PubMed ID: 1325374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin.
    Sergeant S; Kim HD
    J Biol Chem; 1985 Nov; 260(27):14677-82. PubMed ID: 2997220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity.
    Lachaal M; Liu H; Kim S; Spangler RA; Jung CY
    Biochemistry; 1996 Nov; 35(47):14958-62. PubMed ID: 8942661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.