BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25715807)

  • 1. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation.
    Aboud HM; Ali AA; El-Menshawe SF; Elbary AA
    Drug Deliv; 2016 Sep; 23(7):2471-2481. PubMed ID: 25715807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development, Optimization, and Evaluation of Carvedilol-Loaded Solid Lipid Nanoparticles for Intranasal Drug Delivery.
    Aboud HM; El Komy MH; Ali AA; El Menshawe SF; Abd Elbary A
    AAPS PharmSciTech; 2016 Dec; 17(6):1353-1365. PubMed ID: 26743643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of carvedilol-loaded transdermal drug delivery system: In-vitro and in-vivo characterization study.
    Kshirsagar SJ; Bhalekar MR; Mohapatra SK
    Drug Dev Ind Pharm; 2012 Dec; 38(12):1530-7. PubMed ID: 22356303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery.
    El Zaafarany GM; Awad GA; Holayel SM; Mortada ND
    Int J Pharm; 2010 Sep; 397(1-2):164-72. PubMed ID: 20599487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats.
    Mahmoud MO; Aboud HM; Hassan AH; Ali AA; Johnston TP
    J Control Release; 2017 May; 254():10-22. PubMed ID: 28344015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential.
    Singh B; Khurana L; Bandyopadhyay S; Kapil R; Katare OO
    Drug Deliv; 2011 Nov; 18(8):599-612. PubMed ID: 22008038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization.
    Saindane NS; Pagar KP; Vavia PR
    AAPS PharmSciTech; 2013 Mar; 14(1):189-99. PubMed ID: 23255198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and evaluation of mucoadhesive buccal films impregnated with carvedilol nanosuspension: a potential approach for delivery of drugs having high first-pass metabolism.
    Rana P; Murthy RS
    Drug Deliv; 2013; 20(5):224-35. PubMed ID: 23651066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoemulsion system for the transdermal delivery of a poorly soluble cardiovascular drug.
    Dixit N; Kohli K; Baboota S
    PDA J Pharm Sci Technol; 2008; 62(1):46-55. PubMed ID: 18402367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminated sponges as challenging solid hydrophilic matrices for the buccal delivery of carvedilol microemulsion systems: Development and proof of concept via mucoadhesion and pharmacokinetic assessments in healthy human volunteers.
    Abd-Elbary A; Makky AM; Tadros MI; Alaa-Eldin AA
    Eur J Pharm Sci; 2016 Jan; 82():31-44. PubMed ID: 26546947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance.
    Moawad FA; Ali AA; Salem HF
    Drug Deliv; 2017 Nov; 24(1):252-260. PubMed ID: 28156169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucoadhesive bilayer buccal tablet of carvedilol-loaded chitosan microspheres: in vitro, pharmacokinetic and pharmacodynamic investigations.
    Yedurkar P; Dhiman MK; Petkar K; Sawant K
    J Microencapsul; 2012; 29(2):126-37. PubMed ID: 22047549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro permeation of carvedilol through porcine skin: effect of vehicles and penetration enhancers.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    PDA J Pharm Sci Technol; 2008; 62(4):256-63. PubMed ID: 19174954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of carvedilol transdermal patches: evaluation of physicochemical, ex vivo and mechanical properties.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    PDA J Pharm Sci Technol; 2008; 62(6):391-401. PubMed ID: 19634343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carvedilol nano lipid carriers: formulation, characterization and in-vivo evaluation.
    Mishra A; Imam SS; Aqil M; Ahad A; Sultana Y; Ameeduzzafar ; Ali A
    Drug Deliv; 2016 May; 23(4):1486-94. PubMed ID: 26978072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline.
    Al Shuwaili AH; Rasool BK; Abdulrasool AA
    Eur J Pharm Biopharm; 2016 May; 102():101-14. PubMed ID: 26925505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethylenimine Modified and Non-Modified Polymeric Micelles Used for Nasal Administration of Carvedilol.
    Kahraman E; Karagö E; Dinçer S; Ozsoy Y
    J Biomed Nanotechnol; 2015 May; 11(5):890-9. PubMed ID: 26349400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and in vivo evaluation of carvedilol buccal mucoadhesive patches.
    Thimmasetty J; Pandey G; Babu P
    Pak J Pharm Sci; 2008 Jul; 21(3):241-8. PubMed ID: 18614419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration.
    Venishetty VK; Chede R; Komuravelli R; Adepu L; Sistla R; Diwan PV
    Colloids Surf B Biointerfaces; 2012 Jun; 95():1-9. PubMed ID: 22463845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mucoadhesive chitosan microspheres of carvedilol for nasal administration.
    Patil S; Babbar A; Mathur R; Mishra A; Sawant K
    J Drug Target; 2010 May; 18(4):321-31. PubMed ID: 20199172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.