These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25715866)

  • 1. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor.
    Rudykh S; Ortiz C; Boyce MC
    Soft Matter; 2015 Apr; 11(13):2547-54. PubMed ID: 25715866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues.
    Browning A; Ortiz C; Boyce MC
    J Mech Behav Biomed Mater; 2013 Mar; 19():75-86. PubMed ID: 23517749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures.
    Tu W; Pindera MJ
    J Mech Behav Biomed Mater; 2013 Dec; 28():291-308. PubMed ID: 24018396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly deformable bones: unusual deformation mechanisms of seahorse armor.
    Porter MM; Novitskaya E; Castro-Ceseña AB; Meyers MA; McKittrick J
    Acta Biomater; 2013 Jun; 9(6):6763-70. PubMed ID: 23470547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms.
    Chintapalli RK; Mirkhalaf M; Dastjerdi AK; Barthelat F
    Bioinspir Biomim; 2014 Sep; 9(3):036005. PubMed ID: 24613857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.
    Martini R; Balit Y; Barthelat F
    Acta Biomater; 2017 Jun; 55():360-372. PubMed ID: 28323175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printing and mechanics of bio-inspired articulated and multi-material structures.
    Porter MM; Ravikumar N; Barthelat F; Martini R
    J Mech Behav Biomed Mater; 2017 Sep; 73():114-126. PubMed ID: 28131676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales.
    Martini R; Barthelat F
    Bioinspir Biomim; 2016 Oct; 11(6):066001. PubMed ID: 27736808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing nature's protective design: The glyptodont body armor.
    du Plessis A; Broeckhoven C; Yadroitsev I; Yadroitsava I; le Roux SG
    J Mech Behav Biomed Mater; 2018 Jun; 82():218-223. PubMed ID: 29621689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales.
    Liu ZQ; Jiao D; Weng ZY; Zhang ZF
    J Mech Behav Biomed Mater; 2016 Mar; 56():14-22. PubMed ID: 26651064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.
    Funk N; Vera M; Szewciw LJ; Barthelat F; Stoykovich MP; Vernerey FJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5972-83. PubMed ID: 25723101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft three-dimensional network materials with rational bio-mimetic designs.
    Yan D; Chang J; Zhang H; Liu J; Song H; Xue Z; Zhang F; Zhang Y
    Nat Commun; 2020 Mar; 11(1):1180. PubMed ID: 32132524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired interfacial strengthening strategy through geometrically interlocking designs.
    Zhang Y; Yao H; Ortiz C; Xu J; Dao M
    J Mech Behav Biomed Mater; 2012 Nov; 15():70-7. PubMed ID: 23032427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.
    Liu Z; Zhu Y; Jiao D; Weng Z; Zhang Z; Ritchie RO
    Acta Biomater; 2016 Oct; 44():31-40. PubMed ID: 27503833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review.
    Rawat P; Zhu D; Rahman MZ; Barthelat F
    Acta Biomater; 2021 Feb; 121():41-67. PubMed ID: 33285327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the tubular composite with tunable compression mechanical behavior inspired by wood cell.
    Zhao C; Ren L; Song Z; Deng L; Liu Q
    J Mech Behav Biomed Mater; 2019 Jan; 89():132-142. PubMed ID: 30268869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired design of flexible armor based on chiton scales.
    Connors M; Yang T; Hosny A; Deng Z; Yazdandoost F; Massaadi H; Eernisse D; Mirzaeifar R; Dean MN; Weaver JC; Ortiz C; Li L
    Nat Commun; 2019 Dec; 10(1):5413. PubMed ID: 31822663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Snakeskin-Inspired, Soft-Hinge Kirigami Metamaterial for Self-Adaptive Conformal Electronic Armor.
    Jiang S; Liu J; Xiong W; Yang Z; Yin L; Li K; Huang Y
    Adv Mater; 2022 Aug; 34(31):e2204091. PubMed ID: 35680159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Inspired Motion Mechanisms: Computational Design and Material Programming of Self-Adjusting 4D-Printed Wearable Systems.
    Cheng T; Thielen M; Poppinga S; Tahouni Y; Wood D; Steinberg T; Menges A; Speck T
    Adv Sci (Weinh); 2021 Jul; 8(13):2100411. PubMed ID: 34258167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of Arapaima gigas fish scales: structure and mechanical behavior.
    Yang W; Sherman VR; Gludovatz B; Mackey M; Zimmermann EA; Chang EH; Schaible E; Qin Z; Buehler MJ; Ritchie RO; Meyers MA
    Acta Biomater; 2014 Aug; 10(8):3599-614. PubMed ID: 24816264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.