BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25715921)

  • 1. Effect of xylan structure on reactivity in graft copolymerization and subsequent binding to cellulose.
    Littunen K; Kilpeläinen P; Junka K; Sipponen M; Master ER; Seppälä J
    Biomacromolecules; 2015 Apr; 16(4):1102-11. PubMed ID: 25715921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically Debranched Xylans in Graft Copolymerization.
    Littunen K; Mai-Gisondi G; Seppälä J; Master ER
    Biomacromolecules; 2017 May; 18(5):1634-1641. PubMed ID: 28429930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.
    Köhnke T; Ostlund A; Brelid H
    Biomacromolecules; 2011 Jul; 12(7):2633-41. PubMed ID: 21598942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of debranched xylan from solution and on nanocellulosic surfaces.
    Bosmans TJ; Stépán AM; Toriz G; Renneckar S; Karabulut E; Wågberg L; Gatenholm P
    Biomacromolecules; 2014 Mar; 15(3):924-30. PubMed ID: 24495173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.
    Chimphango AF; Görgens JF; van Zyl WH
    Carbohydr Polym; 2016 Jun; 143():172-8. PubMed ID: 27083357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of arabinose substitution on the material properties of arabinoxylan films.
    Sternemalm E; Höije A; Gatenholm P
    Carbohydr Res; 2008 Mar; 343(4):753-7. PubMed ID: 18206863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Xylan Side-Chain Substitutions on Xylan-Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass.
    Pereira CS; Silveira RL; Dupree P; Skaf MS
    Biomacromolecules; 2017 Apr; 18(4):1311-1321. PubMed ID: 28252951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying solubility of polymeric xylan extracted from Eucalyptus grandis and sugarcane bagasse by suitable side chain removing enzymes.
    Gomes KR; Chimphango AF; Görgens JF
    Carbohydr Polym; 2015 Oct; 131():177-85. PubMed ID: 26256174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective chemical oxidation and depolymerization of switchgrass [corrected] (Panicum virgatum L.) xylan with [corrected] oligosaccharide product analysis by mass spectrometry.
    Bowman MJ; Dien BS; O'Bryan PJ; Sarath G; Cotta MA
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):941-50. PubMed ID: 21416531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabinoxylan from finger millet (Eleusine coracana, v. Indaf 15) bran: purification and characterization.
    Savitha Prashanth MR; Muralikrishna G
    Carbohydr Polym; 2014 Jan; 99():800-7. PubMed ID: 24274572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of cellulose and xylan in aqueous ammonia pretreatment.
    Xin D; Jia L; Zhao C; Zhang J
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2626-38. PubMed ID: 25245678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks.
    Mikkelsen D; Flanagan BM; Wilson SM; Bacic A; Gidley MJ
    Biomacromolecules; 2015 Apr; 16(4):1232-9. PubMed ID: 25756836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters.
    Vismara E; Melone L; Gastaldi G; Cosentino C; Torri G
    J Hazard Mater; 2009 Oct; 170(2-3):798-808. PubMed ID: 19520503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose.
    Busse-Wicher M; Li A; Silveira RL; Pereira CS; Tryfona T; Gomes TC; Skaf MS; Dupree P
    Plant Physiol; 2016 Aug; 171(4):2418-31. PubMed ID: 27325663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation.
    Koutaniemi S; van Gool MP; Juvonen M; Jokela J; Hinz SW; Schols HA; Tenkanen M
    J Biotechnol; 2013 Dec; 168(4):684-92. PubMed ID: 24140638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methacrylic acid/butyl acrylate onto feruloylated bagasse xylan: Graft copolymerization and biological activity.
    Qian J; Li H; Zuo K; Feng X; Hu Y; Zhang S
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():594-601. PubMed ID: 30813062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.
    Sim JH; Dong S; Röemhild K; Kaya A; Sohn D; Tanaka K; Roman M; Heinze T; Esker AR
    J Colloid Interface Sci; 2015 Feb; 440():119-25. PubMed ID: 25460697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials.
    Akpinar O; Erdogan K; Bostanci S
    Carbohydr Res; 2009 Mar; 344(5):660-6. PubMed ID: 19211099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation-induced grafting of glycidyl methacrylate onto cotton fabric waste and its modification for anchoring hazardous wastes from their solutions.
    Sokker HH; Badawy SM; Zayed EM; Nour Eldien FA; Farag AM
    J Hazard Mater; 2009 Aug; 168(1):137-44. PubMed ID: 19297095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylan as limiting factor in enzymatic hydrolysis of nanocellulose.
    Penttilä PA; Várnai A; Pere J; Tammelin T; Salmén L; Siika-aho M; Viikari L; Serimaa R
    Bioresour Technol; 2013 Feb; 129():135-41. PubMed ID: 23238342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.