These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 25715979)
1. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. Anselmo AC; Zhang M; Kumar S; Vogus DR; Menegatti S; Helgeson ME; Mitragotri S ACS Nano; 2015 Mar; 9(3):3169-77. PubMed ID: 25715979 [TBL] [Abstract][Full Text] [Related]
2. Engineering poly(ethylene glycol) particles for improved biodistribution. Cui J; De Rose R; Alt K; Alcantara S; Paterson BM; Liang K; Hu M; Richardson JJ; Yan Y; Jeffery CM; Price RI; Peter K; Hagemeyer CE; Donnelly PS; Kent SJ; Caruso F ACS Nano; 2015 Feb; 9(2):1571-80. PubMed ID: 25712853 [TBL] [Abstract][Full Text] [Related]
3. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Parveen S; Sahoo SK Eur J Pharmacol; 2011 Nov; 670(2-3):372-83. PubMed ID: 21951969 [TBL] [Abstract][Full Text] [Related]
4. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Li TS; Yawata T; Honke K Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005 [TBL] [Abstract][Full Text] [Related]
5. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Li Y; Kröger M; Liu WK Biomaterials; 2014 Oct; 35(30):8467-78. PubMed ID: 25002266 [TBL] [Abstract][Full Text] [Related]
6. Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles. Huang M; Wu W; Qian J; Wan DJ; Wei XL; Zhu JH Acta Pharmacol Sin; 2005 Dec; 26(12):1512-8. PubMed ID: 16297352 [TBL] [Abstract][Full Text] [Related]
7. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. Mathaes R; Winter G; Besheer A; Engert J Int J Pharm; 2014 Apr; 465(1-2):159-64. PubMed ID: 24560647 [TBL] [Abstract][Full Text] [Related]
8. Influence of PEG chain on the complement activation suppression and longevity in vivo prolongation of the PCL biomedical nanoparticles. Shan X; Yuan Y; Liu C; Tao X; Sheng Y; Xu F Biomed Microdevices; 2009 Dec; 11(6):1187-94. PubMed ID: 19609680 [TBL] [Abstract][Full Text] [Related]
9. The effect of PEG-5K grafting level and particle size on tumor accumulation and cellular uptake. Lo CL; Chou MH; Lu PL; Lo IW; Chiang YT; Hung SY; Yang CY; Lin SY; Wey SP; Lo JM; Hsiue GH Int J Pharm; 2013 Nov; 456(2):424-31. PubMed ID: 24008083 [TBL] [Abstract][Full Text] [Related]
10. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer. Shan X; Liu C; Yuan Y; Xu F; Tao X; Sheng Y; Zhou H Colloids Surf B Biointerfaces; 2009 Sep; 72(2):303-11. PubMed ID: 19450955 [TBL] [Abstract][Full Text] [Related]
11. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
12. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Gu G; Hu Q; Feng X; Gao X; Menglin J; Kang T; Jiang D; Song Q; Chen H; Chen J Biomaterials; 2014 Sep; 35(28):8215-26. PubMed ID: 24974009 [TBL] [Abstract][Full Text] [Related]
13. In vitro uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells. Missirlis D; Hubbell JA J Biomed Mater Res A; 2010 Jun; 93(4):1557-65. PubMed ID: 20014289 [TBL] [Abstract][Full Text] [Related]
14. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Wang Y; Chen L; Tan L; Zhao Q; Luo F; Wei Y; Qian Z Biomaterials; 2014 Aug; 35(25):6972-85. PubMed ID: 24836952 [TBL] [Abstract][Full Text] [Related]
15. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Gaharwar AK; Dammu SA; Canter JM; Wu CJ; Schmidt G Biomacromolecules; 2011 May; 12(5):1641-50. PubMed ID: 21413708 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Duan X; Li Y Small; 2013 May; 9(9-10):1521-32. PubMed ID: 23019091 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle elasticity directs tumor uptake. Guo P; Liu D; Subramanyam K; Wang B; Yang J; Huang J; Auguste DT; Moses MA Nat Commun; 2018 Jan; 9(1):130. PubMed ID: 29317633 [TBL] [Abstract][Full Text] [Related]
18. A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers. Duan Y; Xu J; Lin Y; Yu H; Gong T; Li Y; Zhang Z J Biomed Mater Res A; 2008 Nov; 87(2):515-23. PubMed ID: 18186066 [TBL] [Abstract][Full Text] [Related]
19. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Gaharwar AK; Rivera CP; Wu CJ; Schmidt G Acta Biomater; 2011 Dec; 7(12):4139-48. PubMed ID: 21839864 [TBL] [Abstract][Full Text] [Related]
20. Impact of particle elasticity on particle-based drug delivery systems. Anselmo AC; Mitragotri S Adv Drug Deliv Rev; 2017 Jan; 108():51-67. PubMed ID: 26806856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]