BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25716009)

  • 1. In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits.
    Valiense H; Barreto M; Resende RF; Alves AT; Rossi AM; Mavropoulos E; Granjeiro JM; Calasans-Maia MD
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):274-82. PubMed ID: 25716009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite.
    Carmo ABXD; Sartoretto SC; Alves ATNN; Granjeiro JM; Miguel FB; Calasans-Maia J; Calasans-Maia MD
    J Appl Oral Sci; 2018 Jan; 26():e20170084. PubMed ID: 29364342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair.
    Calasans-Maia MD; Melo BR; Alves AT; Resende RF; Louro RS; Sartoretto SC; Granjeiro JM; Alves GG
    J Appl Oral Sci; 2015; 23(6):599-608. PubMed ID: 26814461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of apoptosis associated speck-like protein containing a caspase-1 recruitment domain (ASC) in response to bone substitutes.
    Sartoretto SC; Calasans-Maia MD; Alves ATNN; Resende RFB; da Costa Fernandes CJ; de Magalhães Padilha P; Rossi AM; Teti A; Granjeiro JM; Zambuzzi WF
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110965. PubMed ID: 32409093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the association of blood-derived growth factors to nanostructured carbonated hydroxyapatite contributes to the maxillary sinus floor elevation? A randomized clinical trial.
    de Almeida Barros Mourão CF; Lourenço ES; Nascimento JRB; Machado RCM; Rossi AM; Leite PEC; Granjeiro JM; Alves GG; Calasans-Maia MD
    Clin Oral Investig; 2019 Jan; 23(1):369-379. PubMed ID: 29730707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of an alginate carrier on bone formation in a hydroxyapatite scaffold.
    Coathup MJ; Edwards TC; Samizadeh S; Lo WJ; Blunn GW
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1328-35. PubMed ID: 26118665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep.
    Machado CP; Sartoretto SC; Alves AT; Lima IB; Rossi AM; Granjeiro JM; Calasans-Maia MD
    Braz Oral Res; 2016; 30(1):e45. PubMed ID: 27191738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of strontium-doped brushite, bovine-derived hydroxyapatite and synthetic hydroxyapatite in rabbit sinus augmentation with simultaneous implant installation.
    Lu DZ; Zhang YB; Dong W; Bi WJ; Feng XJ; Wen LM; Sun H; Chen H; Zang LY; Qi MC
    J Biomed Mater Res B Appl Biomater; 2020 Nov; 108(8):3402-3412. PubMed ID: 32618100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration.
    Martinez-Zelaya VR; Zarranz L; Herrera EZ; Alves AT; Uzeda MJ; Mavropoulos E; Rossi AL; Mello A; Granjeiro JM; Calasans-Maia MD; Rossi AM
    Int J Nanomedicine; 2019; 14():3471-3490. PubMed ID: 31190805
    [No Abstract]   [Full Text] [Related]  

  • 10. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration.
    Calasans-Maia MD; Barboza Junior CAB; Soriano-Souza CA; Alves ATNN; Uzeda MJP; Martinez-Zelaya VR; Mavropoulos E; Rocha Leão MH; de Santana RB; Granjeiro JM; Rossi AM
    Int J Nanomedicine; 2019; 14():4559-4571. PubMed ID: 31417258
    [No Abstract]   [Full Text] [Related]  

  • 11. Biological evaluation of zinc-containing calcium alginate-hydroxyapatite composite microspheres for bone regeneration.
    Cuozzo RC; Sartoretto SC; Resende RFB; Alves ATNN; Mavropoulos E; Prado da Silva MH; Calasans-Maia MD
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2610-2620. PubMed ID: 32096353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles.
    Valenzuela F; Covarrubias C; Martínez C; Smith P; Díaz-Dosque M; Yazdani-Pedram M
    J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1672-82. PubMed ID: 22707209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells.
    Tohamy KM; Mabrouk M; Soliman IE; Beherei HH; Aboelnasr MA
    Int J Biol Macromol; 2018 Jun; 112():448-460. PubMed ID: 29408578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, Characterization, In Vitro Cytological Responses, and In Vivo Bone Regeneration Effects of Low-Crystalline Nanocarbonated Hydroxyapatite.
    Lu T; Yan S; Shi H; Ye J
    ACS Biomater Sci Eng; 2023 Feb; 9(2):918-931. PubMed ID: 36700921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits.
    Zhang H; Zhou Y; Yu N; Ma H; Wang K; Liu J; Zhang W; Cai Z; He Y
    Acta Biomater; 2019 Jun; 91():82-98. PubMed ID: 30986527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.
    Basu B; Sabareeswaran A; Shenoy SJ
    J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1168-79. PubMed ID: 25303146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.
    Ilie A; Ghiţulică C; Andronescu E; Cucuruz A; Ficai A
    Int J Pharm; 2016 Aug; 510(2):501-7. PubMed ID: 26784979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite.
    Kitahara S; Nakagawa K; Sah RL; Wada Y; Ogawa T; Moriya H; Masuda K
    Tissue Eng Part A; 2008 Nov; 14(11):1905-13. PubMed ID: 18620479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium hydroxyapatite in situ gel-forming system - a new approach for minimally invasive bone augmentation.
    Hao J; Chou J; Kuroda S; Otsuka M; Kasugai S; Lang NP
    Clin Oral Implants Res; 2015 May; 26(5):581-5. PubMed ID: 25040888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.