These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25716025)

  • 1. Iron and iron-based alloys for temporary cardiovascular applications.
    Francis A; Yang Y; Virtanen S; Boccaccini AR
    J Mater Sci Mater Med; 2015 Mar; 26(3):138. PubMed ID: 25716025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design strategy for biodegradable Fe-based alloys for medical applications.
    Schinhammer M; Hänzi AC; Löffler JF; Uggowitzer PJ
    Acta Biomater; 2010 May; 6(5):1705-13. PubMed ID: 19654056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents.
    Purnama A; Hermawan H; Champetier S; Mantovani D; Couet J
    Acta Biomater; 2013 Nov; 9(10):8746-53. PubMed ID: 23499988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.
    Hermawan H; Dubé D; Mantovani D
    J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies.
    Hermawan H; Purnama A; Dube D; Couet J; Mantovani D
    Acta Biomater; 2010 May; 6(5):1852-60. PubMed ID: 19941977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks.
    Kraus T; Moszner F; Fischerauer S; Fiedler M; Martinelli E; Eichler J; Witte F; Willbold E; Schinhammer M; Meischel M; Uggowitzer PJ; Löffler JF; Weinberg A
    Acta Biomater; 2014 Jul; 10(7):3346-53. PubMed ID: 24732635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents.
    Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G
    Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable metals for cardiovascular stent application: interests and new opportunities.
    Moravej M; Mantovani D
    Int J Mol Sci; 2011; 12(7):4250-70. PubMed ID: 21845076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developments in metallic biodegradable stents.
    Hermawan H; Dubé D; Mantovani D
    Acta Biomater; 2010 May; 6(5):1693-7. PubMed ID: 19815097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of metal materials in terms of vascular stents.
    Wu T; Chen X; Fan D; Pang X
    Biomed Mater Eng; 2015; 25(4):435-41. PubMed ID: 26407205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of biodegradable magnesium-based biomaterials].
    Zhu S; Xu L; Huang N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):437-9, 451. PubMed ID: 19499820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in biodegradable metals for medical sutures: a critical review.
    Seitz JM; Durisin M; Goldman J; Drelich JW
    Adv Healthc Mater; 2015 Sep; 4(13):1915-36. PubMed ID: 26172399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives.
    Kitabata H; Waksman R; Warnack B
    Cardiovasc Revasc Med; 2014 Mar; 15(2):109-16. PubMed ID: 24684760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances on the development of magnesium alloys for biodegradable implants.
    Chen Y; Xu Z; Smith C; Sankar J
    Acta Biomater; 2014 Nov; 10(11):4561-4573. PubMed ID: 25034646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process of prototyping coronary stents from biodegradable Fe-Mn alloys.
    Hermawan H; Mantovani D
    Acta Biomater; 2013 Nov; 9(10):8585-92. PubMed ID: 23665503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants.
    Obayi CS; Tolouei R; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Cassar G; Buhagiar J; Mantovani D
    Acta Biomater; 2015 Apr; 17():68-77. PubMed ID: 25644452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Six-Month Long
    Loffredo S; Gambaro S; Marin de Andrade L; Paternoster C; Casati R; Giguère N; Vedani M; Mantovani D
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3669-3682. PubMed ID: 34269556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.
    Moravej M; Prima F; Fiset M; Mantovani D
    Acta Biomater; 2010 May; 6(5):1726-35. PubMed ID: 20085829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.