BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25716319)

  • 1. Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype.
    Midgley AC; Duggal L; Jenkins R; Hascall V; Steadman R; Phillips AO; Meran S
    J Biol Chem; 2015 May; 290(18):11218-34. PubMed ID: 25716319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts.
    Midgley AC; Rogers M; Hallett MB; Clayton A; Bowen T; Phillips AO; Steadman R
    J Biol Chem; 2013 May; 288(21):14824-38. PubMed ID: 23589287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation.
    Simpson RM; Meran S; Thomas D; Stephens P; Bowen T; Steadman R; Phillips A
    Am J Pathol; 2009 Nov; 175(5):1915-28. PubMed ID: 19808648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD147 mediates the CD44s-dependent differentiation of myofibroblasts driven by transforming growth factor-β
    Woods EL; Grigorieva IV; Midgley AC; Brown CVM; Lu YA; Phillips AO; Bowen T; Meran S; Steadman R
    J Biol Chem; 2021 Sep; 297(3):100987. PubMed ID: 34364871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronan facilitates transforming growth factor-β1-dependent proliferation via CD44 and epidermal growth factor receptor interaction.
    Meran S; Luo DD; Simpson R; Martin J; Wells A; Steadman R; Phillips AO
    J Biol Chem; 2011 May; 286(20):17618-30. PubMed ID: 21454519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling.
    Simpson RM; Wells A; Thomas D; Stephens P; Steadman R; Phillips A
    Am J Pathol; 2010 Mar; 176(3):1215-28. PubMed ID: 20093489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyaluronan Controls the Deposition of Fibronectin and Collagen and Modulates TGF-β1 Induction of Lung Myofibroblasts.
    Evanko SP; Potter-Perigo S; Petty LJ; Workman GA; Wight TN
    Matrix Biol; 2015 Mar; 42():74-92. PubMed ID: 25549589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion.
    Bourguignon LY; Singleton PA; Diedrich F; Stern R; Gilad E
    J Biol Chem; 2004 Jun; 279(26):26991-7007. PubMed ID: 15090545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype.
    Webber J; Meran S; Steadman R; Phillips A
    J Biol Chem; 2009 Apr; 284(14):9083-92. PubMed ID: 19193641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover.
    Jenkins RH; Thomas GJ; Williams JD; Steadman R
    J Biol Chem; 2004 Oct; 279(40):41453-60. PubMed ID: 15271981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter-α-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor β1 (TGFβ1)-dependent Fibroblast to Myofibroblast Differentiation.
    Martin J; Midgley A; Meran S; Woods E; Bowen T; Phillips AO; Steadman R
    J Biol Chem; 2016 Jun; 291(26):13789-801. PubMed ID: 27143355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear hyaluronidase 2 drives alternative splicing of
    Midgley AC; Oltean S; Hascall V; Woods EL; Steadman R; Phillips AO; Meran S
    Sci Signal; 2017 Nov; 10(506):. PubMed ID: 29162741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases.
    Dai G; Freudenberger T; Zipper P; Melchior A; Grether-Beck S; Rabausch B; de Groot J; Twarock S; Hanenberg H; Homey B; Krutmann J; Reifenberger J; Fischer JW
    Am J Pathol; 2007 Nov; 171(5):1451-61. PubMed ID: 17982124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions.
    Duterme C; Mertens-Strijthagen J; Tammi M; Flamion B
    J Biol Chem; 2009 Nov; 284(48):33495-508. PubMed ID: 19783662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts.
    Midgley AC; Bowen T; Phillips AO; Steadman R
    Aging Cell; 2014 Apr; 13(2):235-44. PubMed ID: 24134702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.
    Nagaoka A; Yoshida H; Nakamura S; Morikawa T; Kawabata K; Kobayashi M; Sakai S; Takahashi Y; Okada Y; Inoue S
    J Biol Chem; 2015 Dec; 290(52):30910-23. PubMed ID: 26518873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronan regulates transforming growth factor-beta1 receptor compartmentalization.
    Ito T; Williams JD; Fraser DJ; Phillips AO
    J Biol Chem; 2004 Jun; 279(24):25326-32. PubMed ID: 15084590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of fibroblasts to transforming growth factor-β1 on two-dimensional and in three-dimensional hyaluronan hydrogels.
    Chen X; Thibeault SL
    Tissue Eng Part A; 2012 Dec; 18(23-24):2528-38. PubMed ID: 22734649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts.
    Ghatak S; Markwald RR; Hascall VC; Dowling W; Lottes RG; Baatz JE; Beeson G; Beeson CC; Perrella MA; Thannickal VJ; Misra S
    J Biol Chem; 2017 Jun; 292(25):10465-10489. PubMed ID: 28389562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation.
    Midgley AC; Bowen T
    Methods Mol Biol; 2022; 2303():453-468. PubMed ID: 34626400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.