These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 25716522)
1. Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes. Cheng SF; Huang CY; Chen KL; Lin SC; Lin YC Environ Monit Assess; 2015 Mar; 187(3):144. PubMed ID: 25716522 [TBL] [Abstract][Full Text] [Related]
2. Using bioenergy crop cassava ( Shen S; Chen J; Chang J; Xia B Int J Phytoremediation; 2020; 22(12):1313-1320. PubMed ID: 32425052 [TBL] [Abstract][Full Text] [Related]
3. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients. Shen S; Xu G; Clements DR; Jin G; Chen A; Zhang F; Kato-Noguchi H BMC Ecol; 2015 Jan; 15(1):1. PubMed ID: 25626963 [TBL] [Abstract][Full Text] [Related]
4. Differences in absorption of cadmium and lead among fourteen sweet potato cultivars and health risk assessment. Huang F; Zhou H; Gu J; Liu C; Yang W; Liao B; Zhou H Ecotoxicol Environ Saf; 2020 Oct; 203():111012. PubMed ID: 32684522 [TBL] [Abstract][Full Text] [Related]
5. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption. Zehra A; Sahito ZA; Tong W; Tang L; Hamid Y; Khan MB; Ali Z; Naqvi B; Yang X J Environ Sci (China); 2020 Jan; 87():24-38. PubMed ID: 31791497 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of lead using corn in contaminated agricultural land—an in situ study and benefit assessment. Cheng SF; Huang CY; Lin YC; Lin SC; Chen KL Ecotoxicol Environ Saf; 2015 Jan; 111():72-7. PubMed ID: 25450917 [TBL] [Abstract][Full Text] [Related]
7. Identification of low-Cd cultivars of sweet potato (Ipomoea batatas (L.) Lam.) after growing on Cd-contaminated soil: uptake and partitioning to the edible roots. Huang B; Xin J; Dai H; Zhou W; Peng L Environ Sci Pollut Res Int; 2015 Aug; 22(15):11813-21. PubMed ID: 25860549 [TBL] [Abstract][Full Text] [Related]
8. In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management. Vamerali T; Bandiera M; Mosca G Chemosphere; 2011 May; 83(9):1241-8. PubMed ID: 21470658 [TBL] [Abstract][Full Text] [Related]
9. Aromatic plant production on metal contaminated soils. Zheljazkov VD; Craker LE; Xing B; Nielsen NE; Wilcox A Sci Total Environ; 2008 Jun; 395(2-3):51-62. PubMed ID: 18353428 [TBL] [Abstract][Full Text] [Related]
10. Ascorbic acid, β-carotene, sugars, phenols, and heavy metals in sweet potatoes grown in soil fertilized with municipal sewage sludge. Antonious GF; Dennis SO; Unrine JM; Snyder JC J Environ Sci Health B; 2011; 46(2):112-21. PubMed ID: 21207309 [TBL] [Abstract][Full Text] [Related]
11. Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil. Zhao T; Yu Z; Zhang J; Qu L; Li P Environ Sci Pollut Res Int; 2018 Aug; 25(24):24135-24142. PubMed ID: 29948692 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Saghi A; Rashed Mohassel MH; Parsa M; Hammami H Int J Phytoremediation; 2016; 18(4):387-92. PubMed ID: 26552966 [TBL] [Abstract][Full Text] [Related]
13. Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Garrido AE; Strosnider WHJ; Wilson RT; Condori J; Nairn RW Environ Geochem Health; 2017 Jun; 39(3):681-700. PubMed ID: 28337621 [TBL] [Abstract][Full Text] [Related]
14. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636 [TBL] [Abstract][Full Text] [Related]
15. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine. Nobuntou W; Parkpian P; Oanh NT; Noomhorm A; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Nov; 45(13):1702-14. PubMed ID: 20853202 [TBL] [Abstract][Full Text] [Related]
16. Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in Alpine areas? Schwitzguébel JP; Comino E; Plata N; Khalvati M Environ Sci Pollut Res Int; 2011 Jul; 18(6):842-56. PubMed ID: 21465158 [TBL] [Abstract][Full Text] [Related]
17. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
18. Potatoes - A crop resistant against input of heavy metals from the metallicaly contaminated soil. Musilova J; Bystricka J; Lachman J; Harangozo L; Trebichalsky P; Volnova B Int J Phytoremediation; 2016; 18(6):547-52. PubMed ID: 26421760 [TBL] [Abstract][Full Text] [Related]
19. [Effects of different planting modes on soil nitrogen transformation and related enzyme activities]. Yong TW; Yang WY; Xiang DB; Chen XR Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3227-35. PubMed ID: 22384591 [TBL] [Abstract][Full Text] [Related]
20. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]