BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25716768)

  • 1. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-body SAR, maximum temperature, and CEM43 °C due to RF irradiation in an MR body coil of birdcage type at 123 MHz.
    Nadobny J; Klopfleisch R; Brinker G; Stoltenburg-Didinger G
    Int J Hyperthermia; 2015 Jun; 31(4):409-20. PubMed ID: 25716768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils.
    Murbach M; Neufeld E; Capstick M; Kainz W; Brunner DO; Samaras T; Pruessmann KP; Kuster N
    Magn Reson Med; 2014 Jan; 71(1):421-31. PubMed ID: 23413107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperatures in Pigs During 3 T MRI Temperatures, Heart Rates, and Breathing Rates of Pigs During RF Power Deposition in a 3 T (128 MHz) Body Coil.
    Cho CH; Grosse-Siestrup C; Nadobny J; Lojewski C; Niehus SM; Taupitz M; Hamm B; Schlattmann P
    Bioelectromagnetics; 2021 Jan; 42(1):37-50. PubMed ID: 33341973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?
    van Rhoon GC; Samaras T; Yarmolenko PS; Dewhirst MW; Neufeld E; Kuster N
    Eur Radiol; 2013 Aug; 23(8):2215-27. PubMed ID: 23553588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal effects of MR imaging: worst-case studies on sheep.
    Barber BJ; Schaefer DJ; Gordon CJ; Zawieja DC; Hecker J
    AJR Am J Roentgenol; 1990 Nov; 155(5):1105-10. PubMed ID: 2120944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.
    Fiedler TM; Ladd ME; Bitz AK
    Med Phys; 2017 Jan; 44(1):143-157. PubMed ID: 28102957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophysiological responses of human volunteers to whole body RF exposure at 220 MHz.
    Adair ER; Blick DW; Allen SJ; Mylacraine KS; Ziriax JM; Scholl DM
    Bioelectromagnetics; 2005 Sep; 26(6):448-61. PubMed ID: 15906370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiofrequency heating induced by 7T head MRI: thermal assessment using discrete vasculature or Pennes' bioheat equation.
    van Lier AL; Kotte AN; Raaymakers BW; Lagendijk JJ; van den Berg CA
    J Magn Reson Imaging; 2012 Apr; 35(4):795-803. PubMed ID: 22068916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo radiofrequency heating in swine in a 3T (123.2-MHz) birdcage whole body coil.
    Shrivastava D; Utecht L; Tian J; Hughes J; Vaughan JT
    Magn Reson Med; 2014 Oct; 72(4):1141-50. PubMed ID: 24259413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophysiological consequences of whole body resonant RF exposure (100 MHz) in human volunteers.
    Adair ER; Mylacraine KS; Allen SJ
    Bioelectromagnetics; 2003 Oct; 24(7):489-501. PubMed ID: 12955754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of RF heating on SAR and implant position in a 1.5T MR system.
    Muranaka H; Horiguchi T; Usui S; Ueda Y; Nakamura O; Ikeda F
    Magn Reson Med Sci; 2007; 6(4):199-209. PubMed ID: 18239357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of clinical RF hyperthermia on protection limits in the RF range.
    Wust P; Nadobny J; Szimtenings M; Stetter E; Gellermann J
    Health Phys; 2007 Jun; 92(6):565-73. PubMed ID: 17495657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz.
    Ebert S; Eom SJ; Schuderer J; Apostel U; Tillmann T; Dasenbrock C; Kuster N
    Phys Med Biol; 2005 Nov; 50(21):5203-15. PubMed ID: 16237250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid method for thermal dose-based safety supervision during MR scans.
    Neufeld E; Fuetterer M; Murbach M; Kuster N
    Bioelectromagnetics; 2015 Jul; 36(5):398-407. PubMed ID: 25962894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Heating Effect in the Gravid Uterus by Using 3-T MR Imaging Protocols: Experimental Study in Miniature Pigs.
    Cannie MM; De Keyzer F; Van Laere S; Leus A; de Mey J; Fourneau C; De Ridder F; Van Cauteren T; Willekens I; Jani JC
    Radiology; 2016 Jun; 279(3):754-61. PubMed ID: 26624974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiofrequency heating at 9.4T: in vivo temperature measurement results in swine.
    Shrivastava D; Hanson T; Schlentz R; Gallaghar W; Snyder C; Delabarre L; Prakash S; Iaizzo P; Vaughan JT
    Magn Reson Med; 2008 Jan; 59(1):73-8. PubMed ID: 17969077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range.
    Bernardi P; Cavagnaro M; Pisa S; Piuzzi E
    IEEE Trans Biomed Eng; 2003 Mar; 50(3):295-304. PubMed ID: 12669986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.
    Hirata A; Asano T; Fujiwara O
    Phys Med Biol; 2007 Aug; 52(16):5013-23. PubMed ID: 17671350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular effects of radiofrequency energy.
    Elder JA
    Bioelectromagnetics; 2003; Suppl 6():S148-61. PubMed ID: 14628311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAR and temperature changes in the leg due to an RF decoupling coil at frequencies between 64 and 213 MHz.
    Hand JW; Lagendijk JJ; Hajnal JV; Lau RW; Young IR
    J Magn Reson Imaging; 2000 Jul; 12(1):68-74. PubMed ID: 10931565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.