These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25716795)

  • 21. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria.
    Perron GG; Hall AR; Buckling A
    Am Nat; 2010 Sep; 176(3):303-11. PubMed ID: 20624092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental changes bridge evolutionary valleys.
    Steinberg B; Ostermeier M
    Sci Adv; 2016 Jan; 2(1):e1500921. PubMed ID: 26844293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibiotic collateral sensitivity is contingent on the repeatability of evolution.
    Nichol D; Rutter J; Bryant C; Hujer AM; Lek S; Adams MD; Jeavons P; Anderson ARA; Bonomo RA; Scott JG
    Nat Commun; 2019 Jan; 10(1):334. PubMed ID: 30659188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme.
    Salverda MLM; Koomen J; Koopmanschap B; Zwart MP; de Visser JAGM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12773-12778. PubMed ID: 29133391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adapting the engine to the fuel: mutator populations can reduce the mutational load by reorganizing their genome structure.
    Rutten JP; Hogeweg P; Beslon G
    BMC Evol Biol; 2019 Oct; 19(1):191. PubMed ID: 31627727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations.
    Shaver AC; Dombrowski PG; Sweeney JY; Treis T; Zappala RM; Sniegowski PD
    Genetics; 2002 Oct; 162(2):557-66. PubMed ID: 12399371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro selection of variants resistant to beta-lactams plus beta-lactamase inhibitors in CTX-M beta-lactamases: predicting the in vivo scenario?
    Ripoll A; Baquero F; Novais A; Rodríguez-Domínguez MJ; Turrientes MC; Cantón R; Galán JC
    Antimicrob Agents Chemother; 2011 Oct; 55(10):4530-6. PubMed ID: 21788458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Impact of mutation rate on the adaptation of gut bacteria].
    Giraud A; Fons M; Taddei F
    J Soc Biol; 2003; 197(4):389-96. PubMed ID: 15005521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial evolution of antibiotic hypersensitivity.
    Lázár V; Pal Singh G; Spohn R; Nagy I; Horváth B; Hrtyan M; Busa-Fekete R; Bogos B; Méhi O; Csörgő B; Pósfai G; Fekete G; Szappanos B; Kégl B; Papp B; Pál C
    Mol Syst Biol; 2013 Oct; 9():700. PubMed ID: 24169403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of high mutation rates in experimental populations of E. coli.
    Sniegowski PD; Gerrish PJ; Lenski RE
    Nature; 1997 Jun; 387(6634):703-5. PubMed ID: 9192894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria.
    Tenaillon O; Toupance B; Le Nagard H; Taddei F; Godelle B
    Genetics; 1999 Jun; 152(2):485-93. PubMed ID: 10353893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibiotic resistance begets more resistance: chromosomal resistance mutations mitigate fitness costs conferred by multi-resistant clinical plasmids.
    Nair RR; Andersson DI; Warsi OM
    Microbiol Spectr; 2024 May; 12(5):e0420623. PubMed ID: 38534122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis in
    Coolen JPM; den Drijver EPM; Verweij JJ; Schildkraut JA; Neveling K; Melchers WJG; Kolwijck E; Wertheim HFL; Kluytmans JAJW; Huynen MA
    Microb Genom; 2021 Apr; 7(4):. PubMed ID: 33843573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary action of mutations reveals antimicrobial resistance genes in Escherichia coli.
    Marciano DC; Wang C; Hsu TK; Bourquard T; Atri B; Nehring RB; Abel NS; Bowling EA; Chen TJ; Lurie PD; Katsonis P; Rosenberg SM; Herman C; Lichtarge O
    Nat Commun; 2022 Jun; 13(1):3189. PubMed ID: 35680894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent in vivo and in vitro selection of ceftazidime resistance mutations at position 167 of CTX-M-3 beta-lactamase in hypermutable Escherichia coli strains.
    Stepanova MN; Pimkin M; Nikulin AA; Kozyreva VK; Agapova ED; Edelstein MV
    Antimicrob Agents Chemother; 2008 Apr; 52(4):1297-301. PubMed ID: 18212109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutators among CTX-M beta-lactamase-producing Escherichia coli and risk for the emergence of fosfomycin resistance.
    Ellington MJ; Livermore DM; Pitt TL; Hall LM; Woodford N
    J Antimicrob Chemother; 2006 Oct; 58(4):848-52. PubMed ID: 16891630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Access to high-impact mutations constrains the evolution of antibiotic resistance in soft agar.
    Ghaddar N; Hashemidahaj M; Findlay BL
    Sci Rep; 2018 Nov; 8(1):17023. PubMed ID: 30451932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic architecture of intrinsic antibiotic susceptibility.
    Girgis HS; Hottes AK; Tavazoie S
    PLoS One; 2009 May; 4(5):e5629. PubMed ID: 19462005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge.
    Matange N
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31740490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.