These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 25716796)
1. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration. Konow N; Roberts TJ Proc Biol Sci; 2015 Apr; 282(1804):20142800. PubMed ID: 25716796 [TBL] [Abstract][Full Text] [Related]
2. Muscle power attenuation by tendon during energy dissipation. Konow N; Azizi E; Roberts TJ Proc Biol Sci; 2012 Mar; 279(1731):1108-13. PubMed ID: 21957134 [TBL] [Abstract][Full Text] [Related]
3. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing. Hollville E; Nordez A; Guilhem G; Lecompte J; Rabita G Scand J Med Sci Sports; 2019 Jan; 29(1):55-70. PubMed ID: 30242912 [TBL] [Abstract][Full Text] [Related]
4. Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running. Gabaldón AM; Nelson FE; Roberts TJ J Exp Biol; 2004 Jun; 207(Pt 13):2277-88. PubMed ID: 15159432 [TBL] [Abstract][Full Text] [Related]
5. Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task. Werkhausen A; Albracht K; Cronin NJ; Meier R; Bojsen-Møller J; Seynnes OR J Exp Biol; 2017 Nov; 220(Pt 22):4141-4149. PubMed ID: 28883087 [TBL] [Abstract][Full Text] [Related]
6. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions. Roberts TJ; Azizi E J Appl Physiol (1985); 2010 Aug; 109(2):396-404. PubMed ID: 20507964 [TBL] [Abstract][Full Text] [Related]
7. Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks. Waldvogel J; Freyler K; Helm M; Monti E; Stäudle B; Gollhofer A; Narici MV; Ritzmann R; Albracht K J Appl Physiol (1985); 2023 Jan; 134(1):190-202. PubMed ID: 36476161 [TBL] [Abstract][Full Text] [Related]
8. Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max). Gabaldón AM; Nelson FE; Roberts TJ Am J Physiol Regul Integr Comp Physiol; 2008 Jan; 294(1):R200-10. PubMed ID: 17977918 [TBL] [Abstract][Full Text] [Related]
9. Surface properties affect the interplay between fascicles and tendinous tissues during landing. Hollville E; Nordez A; Guilhem G; Lecompte J; Rabita G Eur J Appl Physiol; 2020 Jan; 120(1):203-217. PubMed ID: 31776693 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of goat distal hind limb muscle-tendon function in response to locomotor grade. McGuigan MP; Yoo E; Lee DV; Biewener AA J Exp Biol; 2009 Jul; 212(Pt 13):2092-104. PubMed ID: 19525436 [TBL] [Abstract][Full Text] [Related]
11. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit. Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316 [TBL] [Abstract][Full Text] [Related]
12. Muscular force in running turkeys: the economy of minimizing work. Roberts TJ; Marsh RL; Weyand PG; Taylor CR Science; 1997 Feb; 275(5303):1113-5. PubMed ID: 9027309 [TBL] [Abstract][Full Text] [Related]
13. The integrated function of muscles and tendons during locomotion. Roberts TJ Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1087-99. PubMed ID: 12485693 [TBL] [Abstract][Full Text] [Related]
14. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. Lai A; Schache AG; Lin YC; Pandy MG J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642 [TBL] [Abstract][Full Text] [Related]
15. Interaction between fascicle and tendinous tissues in short-contact stretch-shortening cycle exercise with varying eccentric intensities. Ishikawa M; Niemelä E; Komi PV J Appl Physiol (1985); 2005 Jul; 99(1):217-23. PubMed ID: 15705735 [TBL] [Abstract][Full Text] [Related]
16. Effect of a prehop on the muscle-tendon interaction during vertical jumps. Aeles J; Lichtwark G; Peeters D; Delecluse C; Jonkers I; Vanwanseele B J Appl Physiol (1985); 2018 May; 124(5):1203-1211. PubMed ID: 28775069 [TBL] [Abstract][Full Text] [Related]
17. In vivo behavior of the human soleus muscle with increasing walking and running speeds. Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636 [TBL] [Abstract][Full Text] [Related]
18. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo. Farris DJ; Lichtwark GA; Brown NA; Cresswell AG J Exp Biol; 2016 Feb; 219(Pt 4):528-34. PubMed ID: 26685172 [TBL] [Abstract][Full Text] [Related]
19. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping. Robertson BD; Sawicki GS J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822 [TBL] [Abstract][Full Text] [Related]
20. Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration. Werkhausen A; Willwacher S; Albracht K Scand J Med Sci Sports; 2021 Jul; 31(7):1471-1480. PubMed ID: 33749906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]