BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 25716854)

  • 21. Timing of low frequency responses of anterior and posterior canal vestibulo-ocular neurons in alert cats.
    Brettler SC; Baker JF
    Exp Brain Res; 2003 Mar; 149(2):167-73. PubMed ID: 12610684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of vestibular neurons during rotational motion in alert rhesus monkeys.
    Dickman JD; Angelaki DE
    Exp Brain Res; 2004 Mar; 155(1):91-101. PubMed ID: 15064889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gravity or translation: central processing of vestibular signals to detect motion or tilt.
    Angelaki DE; Dickman JD
    J Vestib Res; 2003; 13(4-6):245-53. PubMed ID: 15096668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric integration recorded from vestibular-only cells in response to position transients.
    Musallam S; Tomlinson RD
    J Neurophysiol; 2002 Oct; 88(4):2104-13. PubMed ID: 12364532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of canal/visual and canal/otolith conflict on type I vestibular nucleus neurones.
    Harris LR; Stelling JW
    Acta Otolaryngol Suppl; 1991; 481():266-8. PubMed ID: 1927391
    [No Abstract]   [Full Text] [Related]  

  • 26. Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion.
    Yu XJ; Thomassen JS; Dickman JD; Newlands SD; Angelaki DE
    J Neurophysiol; 2014 Aug; 112(4):870-89. PubMed ID: 24848470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergence of linear acceleration and yaw rotation signals on non-eye movement neurons in the vestibular nucleus of macaques.
    Newlands SD; Abbatematteo B; Wei M; Carney LH; Luan H
    J Neurophysiol; 2018 Jan; 119(1):73-83. PubMed ID: 28978765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat.
    Endo K; Thomson DB; Wilson VJ; Yamaguchi T; Yates BJ
    J Neurophysiol; 1995 Jul; 74(1):428-36. PubMed ID: 7472343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convergence of the anterior semicircular canal and otolith afferents on cat single vestibular neurons.
    Zhang X; Sasaki M; Sato H; Meng H; Bai RS; Imagawa M; Uchino Y
    Exp Brain Res; 2002 Dec; 147(3):407-17. PubMed ID: 12428148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential coding of head rotation by lateral-vertical canal convergent central vestibular neurons.
    Eron JN; Cohen B; Raphan T; Yakushin SB
    Prog Brain Res; 2008; 171():313-8. PubMed ID: 18718319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing.
    Cullen KE; Brooks JX; Jamali M; Carriot J; Massot C
    Exp Brain Res; 2011 May; 210(3-4):377-88. PubMed ID: 21286693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback.
    Brooks JX; Cullen KE
    J Neurophysiol; 2014 Jun; 111(12):2465-78. PubMed ID: 24671531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human 3-D aVOR with and without otolith stimulation.
    Bockisch CJ; Straumann D; Haslwanter T
    Exp Brain Res; 2005 Mar; 161(3):358-67. PubMed ID: 15490132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses of neurons in the rostral ventrolateral medulla of the cat to natural vestibular stimulation.
    Yates BJ; Goto T; Bolton PS
    Brain Res; 1993 Jan; 601(1-2):255-64. PubMed ID: 8431771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent properties of vestibular-related brain stem neurons in the gerbil.
    Kaufman GD; Shinder ME; Perachio AA
    J Neurophysiol; 2000 Apr; 83(4):1958-71. PubMed ID: 10758107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation.
    Kaptein RG; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1936-48. PubMed ID: 16319209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system.
    Uchino Y; Kushiro K
    Neurosci Res; 2011 Dec; 71(4):315-27. PubMed ID: 21968226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation.
    Kasper J; Schor RH; Wilson VJ
    J Neurophysiol; 1988 Nov; 60(5):1753-64. PubMed ID: 3199179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling transfer characteristics of vestibular neurons in the fastigial nucleus of the behaving monkey on the basis of canal-otolith interaction.
    Wilden A; Glasauer S; Kleine JF; Büttner U
    Neuroreport; 2002 May; 13(6):799-804. PubMed ID: 11997690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anterior canal neurons in cat vestibular nuclei have large phase leads during low frequency vertical axis pitch.
    Brettler SC; Baker JF
    J Vestib Res; 2006; 16(6):245-56. PubMed ID: 17726277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.