These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25716854)

  • 61. Responses of caudal medullary raphe neurons to natural vestibular stimulation.
    Yates BJ; Goto T; Kerman I; Bolton PS
    J Neurophysiol; 1993 Sep; 70(3):938-46. PubMed ID: 8229180
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An integrative neural network for detecting inertial motion and head orientation.
    Green AM; Angelaki DE
    J Neurophysiol; 2004 Aug; 92(2):905-25. PubMed ID: 15056677
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strong correlations between sensitivity and variability give rise to constant discrimination thresholds across the otolith afferent population.
    Jamali M; Carriot J; Chacron MJ; Cullen KE
    J Neurosci; 2013 Jul; 33(27):11302-13. PubMed ID: 23825433
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The contribution of otoliths and semicircular canals to the perception of two-dimensional passive whole-body motion in humans.
    Ivanenko YP; Grasso R; Israël I; Berthoz A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):223-33. PubMed ID: 9234209
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei.
    Roy JE; Cullen KE
    J Neurosci; 2004 Mar; 24(9):2102-11. PubMed ID: 14999061
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates.
    Mackrous I; Carriot J; Cullen KE
    Nat Commun; 2022 Jan; 13(1):120. PubMed ID: 35013266
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Signal processing by vestibular nuclei neurons is dependent on the current behavioral goal.
    Cullen KE; Roy JE; Sylvestre PA
    Ann N Y Acad Sci; 2001 Oct; 942():345-63. PubMed ID: 11710477
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spatial properties of otolith units recorded in the vestibular nuclei.
    Yakushin SB; Raphan T; Cohen B
    Ann N Y Acad Sci; 1999 May; 871():458-62. PubMed ID: 10372104
    [No Abstract]   [Full Text] [Related]  

  • 69. Effects of Sustained Otolith-Only Stimulation on Post-Rotational Nystagmus.
    Shaikh AG; Solomon D
    Cerebellum; 2017 Jun; 16(3):683-690. PubMed ID: 28224454
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neuronal coding of linear motion in the vestibular nuclei of the alert cat. I. Response characteristics to vertical otolith stimulation.
    Xerri C; Barthélémy J; Harlay F; Borel L; Lacour M
    Exp Brain Res; 1987; 65(3):569-81. PubMed ID: 3556485
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
    Straka H; Holler S; Goto F
    J Neurophysiol; 2002 Nov; 88(5):2287-301. PubMed ID: 12424270
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates.
    Carriot J; Jamali M; Chacron MJ; Cullen KE
    J Physiol; 2017 Apr; 595(8):2751-2766. PubMed ID: 28083981
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Location of dye-coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog.
    Birinyi A; Straka H; Matesz C; Dieringer N
    Brain Res; 2001 Dec; 921(1-2):44-59. PubMed ID: 11720710
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Probing the human vestibular system with galvanic stimulation.
    Fitzpatrick RC; Day BL
    J Appl Physiol (1985); 2004 Jun; 96(6):2301-16. PubMed ID: 15133017
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion.
    Dale A; Cullen KE
    J Neurophysiol; 2013 Apr; 109(7):1900-11. PubMed ID: 23324318
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Canal-otolith interactions after off-vertical axis rotations I. Spatial reorientation of horizontal vestibuloocular reflex.
    Jaggi-Schwarz K; Misslisch H; Hess BJ
    J Neurophysiol; 2000 Mar; 83(3):1522-35. PubMed ID: 10712477
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The vestibulo ocular reflex (VOR) in otoconia deficient head tilt (het) mutant mice versus wild type C57BL/6 mice.
    Harrod CG; Baker JF
    Brain Res; 2003 May; 972(1-2):75-83. PubMed ID: 12711080
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons.
    McCrea RA; Gdowski GT; Boyle R; Belton T
    J Neurophysiol; 1999 Jul; 82(1):416-28. PubMed ID: 10400968
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy.
    Sadeghi SG; Minor LB; Cullen KE
    J Neurophysiol; 2007 Feb; 97(2):1503-14. PubMed ID: 17122313
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Responses of non-eye-movement central vestibular neurons to sinusoidal yaw rotation in compensated macaques after unilateral semicircular canal plugging.
    Newlands SD; Wei M; Morgan D; Luan H
    J Neurophysiol; 2016 Oct; 116(4):1871-1884. PubMed ID: 27489364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.