BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25716861)

  • 1. Pharmacologically distinct nicotinic acetylcholine receptors drive efferent-mediated excitation in calyx-bearing vestibular afferents.
    Holt JC; Kewin K; Jordan PM; Cameron P; Klapczynski M; McIntosh JM; Crooks PA; Dwoskin LP; Lysakowski A
    J Neurosci; 2015 Feb; 35(8):3625-43. PubMed ID: 25716861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-9 nicotinic acetylcholine receptor immunoreactivity in the rodent vestibular labyrinth.
    Luebke AE; Maroni PD; Guth SM; Lysakowski A
    J Comp Neurol; 2005 Nov; 492(3):323-33. PubMed ID: 16217793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Choline Agonism in the Inner Ear Hair Cell Nicotinic Acetylcholine Receptor Linked to the α10 Subunit.
    Moglie MJ; Marcovich I; Corradi J; Carpaneto Freixas AE; Gallino S; Plazas PV; Bouzat C; Lipovsek M; Elgoyhen AB
    Front Mol Neurosci; 2021; 14():639720. PubMed ID: 33613194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic tools for studying cochlear inhibition.
    Slika E; Fuchs PA
    Front Cell Neurosci; 2024; 18():1372948. PubMed ID: 38560293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Transcription Factor Sox2 Is Required to Maintain the Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice.
    Stone JS; Pujol R; Nguyen TB; Cox BC
    J Neurosci; 2021 Jul; 41(29):6217-6233. PubMed ID: 34099510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the Structure and Function of the Vestibular Efferent System Among Vertebrates.
    Cullen KE; Wei RH
    Front Neurosci; 2021; 15():684800. PubMed ID: 34248486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relating structure and function of inner hair cell ribbon synapses.
    Wichmann C; Moser T
    Cell Tissue Res; 2015 Jul; 361(1):95-114. PubMed ID: 25874597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death.
    Stawicki TM; Esterberg R; Hailey DW; Raible DW; Rubel EW
    Front Cell Neurosci; 2015; 9():46. PubMed ID: 25741241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interaction of α-conotoxin RgIA with the rat α9α10 nicotinic acetylcholine receptor.
    Azam L; Papakyriakou A; Zouridakis M; Giastas P; Tzartos SJ; McIntosh JM
    Mol Pharmacol; 2015 May; 87(5):855-64. PubMed ID: 25740413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective keratinocyte stimulation is sufficient to evoke nociception in mice.
    Pang Z; Sakamoto T; Tiwari V; Kim YS; Yang F; Dong X; Güler AD; Guan Y; Caterina MJ
    Pain; 2015 Apr; 156(4):656-665. PubMed ID: 25790456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol withdrawal is required to produce persisting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure.
    Reynolds AR; Berry JN; Sharrett-Field L; Prendergast MA
    Alcohol; 2015 May; 49(3):219-27. PubMed ID: 25746220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.
    Poppi LA; Tabatabaee H; Drury HR; Jobling P; Callister RJ; Migliaccio AA; Jordan PM; Holt JC; Rabbitt RD; Lim R; Brichta AM
    J Neurophysiol; 2018 Jan; 119(1):312-325. PubMed ID: 28978760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis.
    Dow E; Siletti K; Hudspeth AJ
    Genes Dev; 2015 May; 29(10):1087-94. PubMed ID: 25995190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments in Pharmacotherapy of Alcoholism.
    Soyka M; Lieb M
    Pharmacopsychiatry; 2015 Jul; 48(4-5):123-35. PubMed ID: 25761458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative High-Resolution Cellular Map of the Organ of Corti.
    Waldhaus J; Durruthy-Durruthy R; Heller S
    Cell Rep; 2015 Jun; 11(9):1385-99. PubMed ID: 26027927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of sensory hair cells by genetic programming with a combination of transcription factors.
    Costa A; Sanchez-Guardado L; Juniat S; Gale JE; Daudet N; Henrique D
    Development; 2015 Jun; 142(11):1948-59. PubMed ID: 26015538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling.
    Defourny J; Mateo Sánchez S; Schoonaert L; Robberecht W; Davy A; Nguyen L; Malgrange B
    Nat Commun; 2015 Apr; 6():7017. PubMed ID: 25923646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory hair cell development and regeneration: similarities and differences.
    Atkinson PJ; Huarcaya Najarro E; Sayyid ZN; Cheng AG
    Development; 2015 May; 142(9):1561-71. PubMed ID: 25922522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Expression by Mouse Inner Ear Hair Cells during Development.
    Scheffer DI; Shen J; Corey DP; Chen ZY
    J Neurosci; 2015 Apr; 35(16):6366-80. PubMed ID: 25904789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation.
    Kersigo J; Fritzsch B
    Front Aging Neurosci; 2015; 7():33. PubMed ID: 25852547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.