BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25716863)

  • 1. Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement.
    Dilger EK; Krahe TE; Morhardt DR; Seabrook TA; Shin HS; Guido W
    J Neurosci; 2015 Feb; 35(8):3652-62. PubMed ID: 25716863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse.
    Dilger EK; Shin HS; Guido W
    J Physiol; 2011 Feb; 589(Pt 4):919-37. PubMed ID: 21173075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The absence of retinal input disrupts the development of cholinergic brainstem projections in the mouse dorsal lateral geniculate nucleus.
    Sokhadze G; Seabrook TA; Guido W
    Neural Dev; 2018 Dec; 13(1):27. PubMed ID: 30541618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the visual pathway is disrupted in mice with a targeted disruption of the calcium channel beta(3)-subunit gene.
    Cork RJ; Namkung Y; Shin HS; Mize RR
    J Comp Neurol; 2001 Nov; 440(2):177-91. PubMed ID: 11745616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolving view of retinogeniculate transmission.
    Litvina EY; Chen C
    Vis Neurosci; 2017 Jan; 34():E013. PubMed ID: 28965513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
    Rebsam A; Petros TJ; Mason CA
    J Neurosci; 2009 Nov; 29(47):14855-63. PubMed ID: 19940181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse.
    Bauer J; Weiler S; Fernholz MHP; Laubender D; Scheuss V; Hübener M; Bonhoeffer T; Rose T
    Neuron; 2021 Aug; 109(15):2457-2468.e12. PubMed ID: 34146468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic mechanisms regulating the activation of a Ca(2+)-mediated plateau potential in developing relay cells of the LGN.
    Lo FS; Ziburkus J; Guido W
    J Neurophysiol; 2002 Mar; 87(3):1175-85. PubMed ID: 11877491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Physiological and anatomical study of the retinogeniculate projections in the mouse].
    Métin C; Godement P; Saillour P; Imbert M
    C R Seances Acad Sci III; 1983 Jan; 296(3):157-62. PubMed ID: 6404518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Convergence at the Retinogeniculate Synapse.
    Litvina EY; Chen C
    Neuron; 2017 Oct; 96(2):330-338.e5. PubMed ID: 29024658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling.
    Tschetter WW; Govindaiah G; Etherington IM; Guido W; Niell CM
    J Neurosci; 2018 May; 38(19):4531-4542. PubMed ID: 29661964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal and Tectal "Driver-Like" Inputs Converge in the Shell of the Mouse Dorsal Lateral Geniculate Nucleus.
    Bickford ME; Zhou N; Krahe TE; Govindaiah G; Guido W
    J Neurosci; 2015 Jul; 35(29):10523-34. PubMed ID: 26203147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation.
    Ziburkus J; Guido W
    J Neurophysiol; 2006 Nov; 96(5):2775-84. PubMed ID: 16899631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CKAMP44 controls synaptic function and strength of relay neurons during early development of the dorsal lateral geniculate nucleus.
    Hetsch F; Wang D; Chen X; Zhang J; Aslam M; Kegel M; Tonner H; Grus F; von Engelhardt J
    J Physiol; 2022 Aug; 600(15):3549-3565. PubMed ID: 35770953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling.
    Charalambakis NE; Govindaiah G; Campbell PW; Guido W
    J Neurosci; 2019 May; 39(20):3856-3866. PubMed ID: 30842249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of the dorsal lateral geniculate nucleus in the mouse.
    Kerschensteiner D; Guido W
    Vis Neurosci; 2017 Jan; 34():E008. PubMed ID: 28965501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.
    Ruksenas O; Fjeld IT; Heggelund P
    Vis Neurosci; 2000; 17(6):855-70. PubMed ID: 11193102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal input regulates the timing of corticogeniculate innervation.
    Seabrook TA; El-Danaf RN; Krahe TE; Fox MA; Guido W
    J Neurosci; 2013 Jun; 33(24):10085-97. PubMed ID: 23761904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.