These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25716891)

  • 1. Idiosyncratic evolution of maternal effects in response to juvenile malnutrition in Drosophila.
    Vijendravarma RK; Kawecki TJ
    J Evol Biol; 2015 Apr; 28(4):876-84. PubMed ID: 25716891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epistasis and maternal effects in experimental adaptation to chronic nutritional stress in Drosophila.
    Vijendravarma RK; Kawecki TJ
    J Evol Biol; 2013 Dec; 26(12):2566-80. PubMed ID: 24118120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic and evolutionary responses of cell size and number to larval malnutrition in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    J Evol Biol; 2011 Apr; 24(4):897-903. PubMed ID: 21276112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Genomic Architecture of Adaptation to Larval Malnutrition Points to a Trade-off with Adult Starvation Resistance in Drosophila.
    Kawecki TJ; Erkosar B; Dupuis C; Hollis B; Stillwell RC; Kapun M
    Mol Biol Evol; 2021 Jun; 38(7):2732-2749. PubMed ID: 33677563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic malnutrition favours smaller critical size for metamorphosis initiation in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    J Evol Biol; 2012 Feb; 25(2):288-92. PubMed ID: 22122120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution demonstrates evolvability of preferential nutrient allocation to competing traits in response to chronic malnutrition.
    Vijendravarma RK
    J Evol Biol; 2018 Nov; 31(11):1743-1749. PubMed ID: 30075055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in
    Erkosar B; Dupuis C; Cavigliasso F; Savary L; Kremmer L; Gallart-Ayala H; Ivanisevic J; Kawecki TJ
    Elife; 2023 Oct; 12():. PubMed ID: 37847744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.
    Bashey F
    Evolution; 2006 Feb; 60(2):348-61. PubMed ID: 16610325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life-history consequences of egg size in Drosophila melanogaster.
    Azevedo RB; French V; Partridge L
    Am Nat; 1997 Aug; 150(2):250-82. PubMed ID: 18811284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens.
    Vijendravarma RK; Narasimha S; Chakrabarti S; Babin A; Kolly S; Lemaitre B; Kawecki TJ
    Ecol Lett; 2015 Oct; 18(10):1078-86. PubMed ID: 26249109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal and grandmaternal age influence offspring fitness in Drosophila.
    Hercus MJ; Hoffmann AA
    Proc Biol Sci; 2000 Oct; 267(1457):2105-10. PubMed ID: 11416916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fitness cost of learning ability in Drosophila melanogaster.
    Mery F; Kawecki TJ
    Proc Biol Sci; 2003 Dec; 270(1532):2465-9. PubMed ID: 14667336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.
    Shenoi VN; Ali SZ; Prasad NG
    J Evol Biol; 2016 Feb; 29(2):407-17. PubMed ID: 26575793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of parental larval diet on egg size and offspring traits in Drosophila.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    Biol Lett; 2010 Apr; 6(2):238-41. PubMed ID: 19875510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of foraging behaviour in response to chronic malnutrition in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    Proc Biol Sci; 2012 Sep; 279(1742):3540-6. PubMed ID: 22696523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis-regulatory polymorphism at fiz ecdysone oxidase contributes to polygenic evolutionary response to malnutrition in Drosophila.
    Cavigliasso F; Savitsky M; Koval A; Erkosar B; Savary L; Gallart-Ayala H; Ivanisevic J; Katanaev VL; Kawecki TJ
    PLoS Genet; 2024 Mar; 20(3):e1011204. PubMed ID: 38452112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments.
    Tyukmaeva VI; Veltsos P; Slate J; Gregson E; Kauranen H; Kankare M; Ritchie MG; Butlin RK; Hoikkala A
    Mol Ecol; 2015 Jun; 24(11):2809-19. PubMed ID: 25877951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval competitive ability without increased larval feeding rate.
    Nagarajan A; Natarajan SB; Jayaram M; Thammanna A; Chari S; Bose J; Jois SV; Joshi A
    J Genet; 2016 Jun; 95(2):411-25. PubMed ID: 27350686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.