BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 25716896)

  • 41. Over-production of porphyrins and heme in heterotrophic bacteria.
    Philipp-Dormston WK; Doss M
    Z Naturforsch C Biosci; 1975; 30(3):425-6. PubMed ID: 126586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein.
    Wang LY; Brown L; Elliott M; Elliott T
    J Bacteriol; 1997 May; 179(9):2907-14. PubMed ID: 9139907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme, porphobilinogen synthase.
    Rhie G; Avissar YJ; Beale SI
    J Biol Chem; 1996 Apr; 271(14):8176-82. PubMed ID: 8626508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leishmania major possesses a unique HemG-type protoporphyrinogen IX oxidase.
    Zwerschke D; Karrie S; Jahn D; Jahn M
    Biosci Rep; 2014 Jul; 34(4):. PubMed ID: 24962471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene.
    Choi HP; Lee YM; Yun CW; Sung HC
    J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A mutant Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase with an altered metal requirement functions in situ for tetrapyrrole synthesis in soybean root nodules.
    Chauhan S; O'Brian MR
    J Biol Chem; 1995 Aug; 270(34):19823-7. PubMed ID: 7649992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase.
    Xie L; Eiteman MA; Altman E
    Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subcellular localization and light-regulated expression of protoporphyrinogen IX oxidase and ferrochelatase in Chlamydomonas reinhardtii.
    van Lis R; Atteia A; Nogaj LA; Beale SI
    Plant Physiol; 2005 Dec; 139(4):1946-58. PubMed ID: 16306143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Escherichia coli visA gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway.
    Frustaci JM; O'Brian MR
    J Bacteriol; 1993 Apr; 175(7):2154-6. PubMed ID: 8458858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression and characterization of the terminal heme synthetic enzymes from the hyperthermophile Aquifex aeolicus.
    Wang KF; Dailey TA; Dailey HA
    FEMS Microbiol Lett; 2001 Aug; 202(1):115-9. PubMed ID: 11506917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Porphyrin biosynthesis intermediates are not regulating delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Moretti MB; Garcia SC; Batlle A
    Biochem Biophys Res Commun; 2000 Jun; 272(3):946-50. PubMed ID: 10860855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping of a new hem gene in Escherichia coli K12.
    Săsărman A; Chartrand P; Lavoie M; Tardif D; Proschek R; Lapointe C
    J Gen Microbiol; 1979 Aug; 113(2):297-303. PubMed ID: 390093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes.
    Hibino A; Petri R; Büchs J; Ohtake H
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7337-44. PubMed ID: 23604563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene.
    Frustaci JM; O'Brian MR
    J Bacteriol; 1992 Jul; 174(13):4223-9. PubMed ID: 1624416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli.
    Pranawidjaja S; Choi SI; Lay BW; Kim P
    J Microbiol Biotechnol; 2015 Jun; 25(6):880-6. PubMed ID: 25537720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct assay of delta-aminolevulinic acid dehydratase in heme biosynthesis for the detection of porphyrias by tandem mass spectrometry.
    Choiniere JR; Scott CR; Gelb MH; Turecek F
    Anal Chem; 2010 Aug; 82(15):6730-6. PubMed ID: 20583792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis.
    Elliott T; Roth JR
    Mol Gen Genet; 1989 Apr; 216(2-3):303-14. PubMed ID: 2664454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The porphyrias: pathophysiology.
    Pietrangelo A
    Intern Emerg Med; 2010 Oct; 5 Suppl 1():S65-71. PubMed ID: 20865477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of haem biosynthesis inhibitors and inducers on intestinal iron absorption and liver haem biosynthetic enzyme activities.
    Laftah AH; Simpson RJ; Peters TJ; Raja KB
    Toxicol Appl Pharmacol; 2008 Jun; 229(3):273-80. PubMed ID: 18384829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.