BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 25717057)

  • 1. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives.
    Janouškovec J; Tikhonenkov DV; Burki F; Howe AT; Kolísko M; Mylnikov AP; Keeling PJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10200-7. PubMed ID: 25717057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Independent Origins of Apicomplexan-Like Parasites.
    Mathur V; Kolísko M; Hehenberger E; Irwin NAT; Leander BS; Kristmundsson Á; Freeman MA; Keeling PJ
    Curr Biol; 2019 Sep; 29(17):2936-2941.e5. PubMed ID: 31422883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles.
    Janouškovec J; Paskerova GG; Miroliubova TS; Mikhailov KV; Birley T; Aleoshin VV; Simdyanov TG
    Elife; 2019 Aug; 8():. PubMed ID: 31418692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites.
    Gile GH; Slamovits CH
    PLoS One; 2014; 9(5):e96258. PubMed ID: 24797661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary Structure of 28S rRNA Gene Confirms Monophyly of Free-Living Heterotrophic and Phototrophic Apicomplexans (Alveolata).
    Mikhailov KV; Tikhonenkov DV; Janouškovec J; Diakin AY; Ofitserov MV; Mylnikov AP; Aleshin VV
    Biochemistry (Mosc); 2015 Nov; 80(11):1492-9. PubMed ID: 26615441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A photosynthetic alveolate closely related to apicomplexan parasites.
    Moore RB; Oborník M; Janouskovec J; Chrudimský T; Vancová M; Green DH; Wright SW; Davies NW; Bolch CJ; Heimann K; Slapeta J; Hoegh-Guldberg O; Logsdon JM; Carter DA
    Nature; 2008 Feb; 451(7181):959-63. PubMed ID: 18288187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny and evolution of apicoplasts and apicomplexan parasites.
    Arisue N; Hashimoto T
    Parasitol Int; 2015 Jun; 64(3):254-9. PubMed ID: 25451217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes.
    Kwong WK; Del Campo J; Mathur V; Vermeij MJA; Keeling PJ
    Nature; 2019 Apr; 568(7750):103-107. PubMed ID: 30944491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenomics Identifies a New Major Subgroup of Apicomplexans, Marosporida class nov., with Extreme Apicoplast Genome Reduction.
    Mathur V; Kwong WK; Husnik F; Irwin NAT; Kristmundsson Á; Gestal C; Freeman M; Keeling PJ
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33566096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage.
    Blanchard JL; Hicks JS
    J Eukaryot Microbiol; 1999; 46(4):367-75. PubMed ID: 10461383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-sea corals provide new insight into the ecology, evolution, and the role of plastids in widespread apicomplexan symbionts of anthozoans.
    Vohsen SA; Anderson KE; Gade AM; Gruber-Vodicka HR; Dannenberg RP; Osman EO; Dubilier N; Fisher CR; Baums IB
    Microbiome; 2020 Mar; 8(1):34. PubMed ID: 32164774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastids are widespread and ancient in parasites of the phylum Apicomplexa.
    Lang-Unnasch N; Reith ME; Munholland J; Barta JR
    Int J Parasitol; 1998 Nov; 28(11):1743-54. PubMed ID: 9846612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Babesia bovis: a comprehensive phylogenetic analysis of plastid-encoded genes supports green algal origin of apicoplasts.
    Lau AO; McElwain TF; Brayton KA; Knowles DP; Roalson EH
    Exp Parasitol; 2009 Nov; 123(3):236-43. PubMed ID: 19646439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromera velia: The Missing Link in the Evolution of Parasitism.
    Weatherby K; Carter D
    Adv Appl Microbiol; 2013; 85():119-44. PubMed ID: 23942150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again.
    Oborník M; Janouskovec J; Chrudimský T; Lukes J
    Int J Parasitol; 2009 Jan; 39(1):1-12. PubMed ID: 18822291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoparasitism as an Intermediate State in the Evolution of Apicomplexan Parasites.
    Oborník M
    Trends Parasitol; 2020 Sep; 36(9):727-734. PubMed ID: 32680786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites.
    Oborník M; Lukeš J
    Annu Rev Microbiol; 2015; 69():129-44. PubMed ID: 26092225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex Endosymbioses II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism.
    Botté CY; Yamaryo-Botté Y
    Methods Mol Biol; 2018; 1829():37-54. PubMed ID: 29987713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of Plastid Proteomes of Apicomplexans and Close Relatives Reveals the Major Evolutionary Outcomes of Cryptic Plastids.
    Mathur V; Salomaki ED; Wakeman KC; Na I; Kwong WK; Kolisko M; Keeling PJ
    Mol Biol Evol; 2023 Jan; 40(1):. PubMed ID: 36610734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.