These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 25717081)
1. Pigment Deposition in the Rat Retina. Hojman AS; Otzen LW; Schrøder-Hansen LM; Wegener KM Toxicol Pathol; 2015 Aug; 43(6):890-2. PubMed ID: 25717081 [TBL] [Abstract][Full Text] [Related]
2. Retinal light damage reduces autofluorescent pigment deposition in the retinal pigment epithelium. Katz ML; Eldred GE Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):37-43. PubMed ID: 2912913 [TBL] [Abstract][Full Text] [Related]
3. Iron-induced accumulation of lipofuscin-like fluorescent pigment in the retinal pigment epithelium. Katz ML; Stientjes HJ; Gao CL; Christianson JS Invest Ophthalmol Vis Sci; 1993 Oct; 34(11):3161-71. PubMed ID: 8407225 [TBL] [Abstract][Full Text] [Related]
4. Iron-induced fluorescence in the retina: dependence on vitamin A. Katz ML; Christianson JS; Gao CL; Handelman GJ Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3613-24. PubMed ID: 8088951 [TBL] [Abstract][Full Text] [Related]
5. [Resynthesis of rhodopsin in rats with hereditary retinal dystrophy]. Shabanova ME; Tereshchenko OD; Ostapenko IA Biull Eksp Biol Med; 1978 Feb; 85(2):167-70. PubMed ID: 630088 [TBL] [Abstract][Full Text] [Related]
6. Developmental iron uptake and axonal transport in the retina of the rat. Moos T; Bernth N; Courtois Y; Morgan EH Mol Cell Neurosci; 2011 Mar; 46(3):607-13. PubMed ID: 21211566 [TBL] [Abstract][Full Text] [Related]
7. [Distribution of transferrin and transferrin receptor of the type 1 in the process of formation of the rat eye retina in early postnatal ontogenesis]. Efimova MG; Jeanny J-; Courtois Y Zh Evol Biokhim Fiziol; 2008; 44(6):563-9. PubMed ID: 19198156 [TBL] [Abstract][Full Text] [Related]
8. Calcium oxalate crystals localized in the eye. Subretinal and retinal deposits, including deposits in the pigment epithelium. Jensen OA Acta Ophthalmol (Copenh); 1975 Mar; 53(2):187-96. PubMed ID: 1174000 [TBL] [Abstract][Full Text] [Related]
9. Pigment epithelium-derived factor gene therapy targeting retinal ganglion cell injuries: neuroprotection against loss of function in two animal models. Miyazaki M; Ikeda Y; Yonemitsu Y; Goto Y; Murakami Y; Yoshida N; Tabata T; Hasegawa M; Tobimatsu S; Sueishi K; Ishibashi T Hum Gene Ther; 2011 May; 22(5):559-65. PubMed ID: 21175295 [TBL] [Abstract][Full Text] [Related]
10. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Chen H; Lukas TJ; Du N; Suyeoka G; Neufeld AH Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1895-902. PubMed ID: 19151392 [TBL] [Abstract][Full Text] [Related]
11. Administration of novel dyes for intraocular surgery: an in vivo toxicity animal study. Schuettauf F; Haritoglou C; May CA; Rejdak R; Mankowska A; Freyer W; Eibl K; Zrenner E; Kampik A; Thaler S Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3573-8. PubMed ID: 16877431 [TBL] [Abstract][Full Text] [Related]
12. The 11-cis Retinal Origins of Lipofuscin in the Retina. Adler L; Boyer NP; Chen C; Ablonczy Z; Crouch RK; Koutalos Y Prog Mol Biol Transl Sci; 2015; 134():e1-12. PubMed ID: 26310175 [TBL] [Abstract][Full Text] [Related]
13. [Cytochemical and electron microscopic study on phosphorylase in the choroid and pigment epithelium of the retina. II. Glycogen synthesized from glucose-1-phosphate by phosphorylase in the pigment epithelium of the retina]. Amemiya T Nippon Ganka Gakkai Zasshi; 1969 Sep; 73(9):1683-90. PubMed ID: 5390597 [No Abstract] [Full Text] [Related]
14. Lipofuscin in the retina: quantitative assay for an unprecedented autofluorescent compound (pyridinium bis-retinoid, A2-E) of ocular age pigment. Reinboth JJ; Gautschi K; Munz K; Eldred GE; Remé CE Exp Eye Res; 1997 Nov; 65(5):639-43. PubMed ID: 9367643 [TBL] [Abstract][Full Text] [Related]
15. Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. Villegas-Pérez MP; Lawrence JM; Vidal-Sanz M; Lavail MM; Lund RD J Comp Neurol; 1998 Mar; 392(1):58-77. PubMed ID: 9482233 [TBL] [Abstract][Full Text] [Related]
16. Preparative and biosynthetic insights into pdA2E and isopdA2E, retinal-derived fluorophores of retinal pigment epithelial lipofuscin. Zhao J; Yao K; Jin Q; Jiang K; Chen J; Liu Z; Li J; Wu Y Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8241-50. PubMed ID: 25414195 [TBL] [Abstract][Full Text] [Related]
17. Molecular medicine in ophthalmic care. Richer S; Stiles W; Thomas C Optometry; 2009 Dec; 80(12):695-701. PubMed ID: 19932443 [TBL] [Abstract][Full Text] [Related]
18. Changes in spectral properties and composition of lipofuscin fluorophores from human-retinal-pigment epithelium with age and pathology. Feldman TB; Yakovleva MA; Arbukhanova PM; Borzenok SA; Kononikhin AS; Popov IA; Nikolaev EN; Ostrovsky MA Anal Bioanal Chem; 2015 Feb; 407(4):1075-88. PubMed ID: 25471291 [TBL] [Abstract][Full Text] [Related]
19. AMD-like lesions in the rat retina: a latent consequence of perinatal hemorrhage. Pow DV; Diaz CM Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):2790-8. PubMed ID: 18390639 [TBL] [Abstract][Full Text] [Related]
20. Observation of A2E oxidation products in human retinal lipofuscin. Avalle LB; Wang Z; Dillon JP; Gaillard ER Exp Eye Res; 2004 Apr; 78(4):895-8. PubMed ID: 15037123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]