BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25717187)

  • 1. Microtubule-dependent transport and dynamics of vimentin intermediate filaments.
    Hookway C; Ding L; Davidson MW; Rappoport JZ; Danuser G; Gelfand VI
    Mol Biol Cell; 2015 May; 26(9):1675-86. PubMed ID: 25717187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vimentin filament precursors exchange subunits in an ATP-dependent manner.
    Robert A; Rossow MJ; Hookway C; Adam SA; Gelfand VI
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3505-14. PubMed ID: 26109569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.
    Robert A; Tian P; Adam SA; Kittisopikul M; Jaqaman K; Goldman RD; Gelfand VI
    FASEB J; 2019 Jan; 33(1):388-399. PubMed ID: 29944446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.
    Robert A; Herrmann H; Davidson MW; Gelfand VI
    FASEB J; 2014 Jul; 28(7):2879-90. PubMed ID: 24652946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing.
    Colakoğlu G; Brown A
    J Cell Biol; 2009 Jun; 185(5):769-77. PubMed ID: 19468066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin.
    Gyoeva FK; Gelfand VI
    Nature; 1991 Oct; 353(6343):445-8. PubMed ID: 1832745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of microtubule-associated motors drives intermediate filament network polarization.
    Leduc C; Etienne-Manneville S
    J Cell Biol; 2017 Jun; 216(6):1689-1703. PubMed ID: 28432079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions.
    Schaedel L; Lorenz C; Schepers AV; Klumpp S; Köster S
    Nat Commun; 2021 Jun; 12(1):3799. PubMed ID: 34145230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate filament dynamics: What we can see now and why it matters.
    Robert A; Hookway C; Gelfand VI
    Bioessays; 2016 Mar; 38(3):232-43. PubMed ID: 26763143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel taxol-induced vimentin phosphorylation and stabilization revealed by studies on stable microtubules and vimentin intermediate filaments.
    Vilalta PM; Zhang L; Hamm-Alvarez SF
    J Cell Sci; 1998 Jul; 111 ( Pt 13)():1841-52. PubMed ID: 9625747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association of tau-like proteins with vimentin filaments in cultured cells.
    Capote C; Maccioni RB
    Exp Cell Res; 1998 Mar; 239(2):202-13. PubMed ID: 9521838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments.
    Ridge KM; Shumaker D; Robert A; Hookway C; Gelfand VI; Janmey PA; Lowery J; Guo M; Weitz DA; Kuczmarski E; Goldman RD
    Methods Enzymol; 2016; 568():389-426. PubMed ID: 26795478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of nucleic acids to intermediate filaments of the vimentin type and their effects on filament formation and stability.
    Traub P; Mothes E; Shoeman RL; Schröder R; Scherbarth A
    J Biomol Struct Dyn; 1992 Dec; 10(3):505-31. PubMed ID: 1492922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.
    Smoler M; Coceano G; Testa I; Bruno L; Levi V
    Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118726. PubMed ID: 32320724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamic properties of intermediate filaments during organelle transport.
    Chang L; Barlan K; Chou YH; Grin B; Lakonishok M; Serpinskaya AS; Shumaker DK; Herrmann H; Gelfand VI; Goldman RD
    J Cell Sci; 2009 Aug; 122(Pt 16):2914-23. PubMed ID: 19638410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic modeling reveals how motor protein and filament properties affect intermediate filament transport.
    Dallon JC; Leduc C; Etienne-Manneville S; Portet S
    J Theor Biol; 2019 Mar; 464():132-148. PubMed ID: 30594630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vimentin S-glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments in vitro.
    Kaus-Drobek M; Mücke N; Szczepanowski RH; Wedig T; Czarnocki-Cieciura M; Polakowska M; Herrmann H; Wysłouch-Cieszyńska A; Dadlez M
    FEBS J; 2020 Dec; 287(24):5304-5322. PubMed ID: 32255262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro.
    Inagaki M; Nishi Y; Nishizawa K; Matsuyama M; Sato C
    Nature; 1987 Aug 13-19; 328(6131):649-52. PubMed ID: 3039376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxol induces concomitant hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells.
    Chu JJ; Chen KD; Lin YL; Fei CY; Chiang AS; Chiang CD; Lai YK
    J Cell Biochem; 1998 Mar; 68(4):472-83. PubMed ID: 9493910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of protein phosphatase 2A with its substrate vimentin intermediate filaments in 9L rat brain tumor cells.
    Cheng TJ; Lin YL; Chiang AS; Lai YK
    J Cell Biochem; 2000 Jul; 79(1):126-38. PubMed ID: 10906761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.