These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25717196)

  • 1. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated benchmarking platform for MHC class II binding prediction methods.
    Andreatta M; Trolle T; Yan Z; Greenbaum JA; Peters B; Nielsen M
    Bioinformatics; 2018 May; 34(9):1522-1528. PubMed ID: 29281002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications.
    Bui HH; Sidney J; Peters B; Sathiamurthy M; Sinichi A; Purton KA; Mothé BR; Chisari FV; Watkins DI; Sette A
    Immunogenetics; 2005 Jun; 57(5):304-14. PubMed ID: 15868141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
    Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B
    PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
    Karosiene E; Lundegaard C; Lund O; Nielsen M
    Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NetMHCpan, a method for MHC class I binding prediction beyond humans.
    Hoof I; Peters B; Sidney J; Pedersen LE; Sette A; Lund O; Buus S; Nielsen M
    Immunogenetics; 2009 Jan; 61(1):1-13. PubMed ID: 19002680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles.
    Reche PA; Glutting JP; Zhang H; Reinherz EL
    Immunogenetics; 2004 Sep; 56(6):405-19. PubMed ID: 15349703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation IEDB tools: a platform for epitope prediction and analysis.
    Yan Z; Kim K; Kim H; Ha B; Gambiez A; Bennett J; de Almeida Mendes MF; Trevizani R; Mahita J; Richardson E; Marrama D; Blazeska N; Koşaloğlu-Yalçın Z; Nielsen M; Sette A; Peters B; Greenbaum JA
    Nucleic Acids Res; 2024 Jul; 52(W1):W526-W532. PubMed ID: 38783079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
    Zhang H; Lundegaard C; Nielsen M
    Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction.
    Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J
    Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gapped sequence alignment using artificial neural networks: application to the MHC class I system.
    Andreatta M; Nielsen M
    Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.
    Lundegaard C; Lamberth K; Harndahl M; Buus S; Lund O; Nielsen M
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W509-12. PubMed ID: 18463140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.