BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25717284)

  • 41. On the accessibility and selection of the initiator site of mRNA in protein synthesis.
    Nakamoto T; Vogl B
    Biochim Biophys Acta; 1978 Feb; 517(2):367-77. PubMed ID: 341982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Translation initiation complex formation with 30 S ribosomal particles mutated at conserved positions in the 3'-minor domain of 16 S RNA.
    Ringquist S; Cunningham P; Weitzmann C; Formenoy L; Pleij C; Ofengand J; Gold L
    J Mol Biol; 1993 Nov; 234(1):14-27. PubMed ID: 8230193
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inducers of erythroleukemic differentiation cause messenger RNAs that lack poly(A)-binding protein to accumulate in translationally inactive, salt-labile 80 S ribosomal complexes.
    Hensold JO; Barth-Baus D; Stratton CA
    J Biol Chem; 1996 Sep; 271(38):23246-54. PubMed ID: 8798522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of Tacaribe Mammarenavirus Translation: Positive 5' and Negative 3' Elements and Role of Key Cellular Factors.
    Foscaldi S; D'Antuono A; Noval MG; de Prat Gay G; Scolaro L; Lopez N
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28468879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immunoglobulin mu- and gamma-ribonucleic acid sequences in thymocytes and splenocytes from normal and hyperimmune mice.
    Near RI; Storb U
    Biochemistry; 1981 Apr; 20(9):2386-94. PubMed ID: 6165381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation.
    Weisser M; Ban N
    Cold Spring Harb Perspect Biol; 2019 Sep; 11(9):. PubMed ID: 31481454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions.
    Shirokikh NE; Preiss T
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1473. PubMed ID: 29624880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selection of the mRNA translation initiation region by Escherichia coli ribosomes.
    Calogero RA; Pon CL; Canonaco MA; Gualerzi CO
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6427-31. PubMed ID: 3045816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Minimum internal ribosome entry site required for poliovirus infectivity.
    Haller AA; Nguyen JH; Semler BL
    J Virol; 1993 Dec; 67(12):7461-71. PubMed ID: 8230467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of ribosomal ribonucleic acid in the structure and function of mammalian brain ribosomes.
    Grove BK; Johnson TC
    Biochem J; 1974 Nov; 143(2):419-26. PubMed ID: 4462559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potentiation of hemoglobin messenger ribonucleic acid. A step in protein synthesis initiation involving interaction of messenger with 18 S ribosomal ribonucleic acid.
    Kabat D
    J Biol Chem; 1975 Aug; 250(15):6085-92. PubMed ID: 1150673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae.
    Ramirez M; Wek RC; Hinnebusch AG
    Mol Cell Biol; 1991 Jun; 11(6):3027-36. PubMed ID: 2038314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Primary structure of human nuclear ribonucleoprotein particle C proteins: conservation of sequence and domain structures in heterogeneous nuclear RNA, mRNA, and pre-rRNA-binding proteins.
    Swanson MS; Nakagawa TY; LeVan K; Dreyfuss G
    Mol Cell Biol; 1987 May; 7(5):1731-9. PubMed ID: 3110598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The rates of macromolecular chain elongation modulate the initiation frequencies for transcription and translation in Escherichia coli.
    Sørensen MA; Vogel U; Jensen KF; Pedersen S
    Antonie Van Leeuwenhoek; 1993; 63(3-4):323-31. PubMed ID: 7506514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical Modifications of mRNA Ends for Therapeutic Applications.
    Warminski M; Mamot A; Depaix A; Kowalska J; Jemielity J
    Acc Chem Res; 2023 Oct; 56(20):2814-2826. PubMed ID: 37782471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reactions in vitro.
    Stallcup MR; Sharrock WJ; Rabinowitz JC
    J Biol Chem; 1976 Apr; 251(8):2499-510. PubMed ID: 816792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.