These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25719315)

  • 1. Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids.
    Rut W; Kasperkiewicz P; Byzia A; Poreba M; Groborz K; Drag M
    Biol Chem; 2015 Apr; 396(4):329-37. PubMed ID: 25719315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Unnatural Amino Acids in Protease Probes.
    Maluch I; Czarna J; Drag M
    Chem Asian J; 2019 Dec; 14(23):4103-4113. PubMed ID: 31593336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity.
    Kasperkiewicz P; Gajda AD; Drąg M
    Biol Chem; 2012 Sep; 393(9):843-51. PubMed ID: 22944686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity.
    Poreba M; Salvesen GS; Drag M
    Nat Protoc; 2017 Oct; 12(10):2189-2214. PubMed ID: 28933778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library.
    Byzia A; Szeffler A; Kalinowski L; Drag M
    Biochimie; 2016 Mar; 122():31-7. PubMed ID: 26449746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries.
    Harris JL; Backes BJ; Leonetti F; Mahrus S; Ellman JA; Craik CS
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7754-9. PubMed ID: 10869434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using specificity to strategically target proteases.
    Lim MD; Craik CS
    Bioorg Med Chem; 2009 Feb; 17(3):1094-100. PubMed ID: 18434168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current strategies for probing substrate specificity of proteases.
    Poreba M; Drag M
    Curr Med Chem; 2010; 17(33):3968-95. PubMed ID: 20939826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening for protease substrate by polyvalent phage display.
    Sedlacek R; Chen E
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):197-203. PubMed ID: 15777183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity profiling of human deSUMOylating enzymes (SENPs) with synthetic substrates suggests an unexpected specificity of two newly characterized members of the family.
    Drag M; Mikolajczyk J; Krishnakumar IM; Huang Z; Salvesen GS
    Biochem J; 2008 Jan; 409(2):461-9. PubMed ID: 17916063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases.
    Kaman WE; Voskamp-Visser I; de Jongh DM; Endtz HP; van Belkum A; Hays JP; Bikker FJ
    Anal Biochem; 2013 Oct; 441(1):38-43. PubMed ID: 23850560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional scanning substrate combinatorial library (PS-SCL) approach to define caspase substrate specificity.
    Poręba M; Szalek A; Kasperkiewicz P; Drąg M
    Methods Mol Biol; 2014; 1133():41-59. PubMed ID: 24567093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning the prime-site substrate specificity of proteolytic enzymes: a novel assay based on ligand-enhanced lanthanide ion fluorescence.
    Barrios AM; Craik CS
    Bioorg Med Chem Lett; 2002 Dec; 12(24):3619-23. PubMed ID: 12443789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin.
    Backes BJ; Harris JL; Leonetti F; Craik CS; Ellman JA
    Nat Biotechnol; 2000 Feb; 18(2):187-93. PubMed ID: 10657126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes.
    Turk BE; Cantley LC
    Methods; 2004 Apr; 32(4):398-405. PubMed ID: 15003602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positional scanning synthetic combinatorial libraries for substrate profiling.
    Schneider EL; Craik CS
    Methods Mol Biol; 2009; 539():59-78. PubMed ID: 19377970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.