These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25719318)

  • 1. Incidence and physiological relevance of protein thiol switches.
    Leichert LI; Dick TP
    Biol Chem; 2015 May; 396(5):389-99. PubMed ID: 25719318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic control of cysteinyl thiol switches in proteins.
    Deponte M; Lillig CH
    Biol Chem; 2015 May; 396(5):401-13. PubMed ID: 25581754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol switches in mitochondria: operation and physiological relevance.
    Riemer J; Schwarzländer M; Conrad M; Herrmann JM
    Biol Chem; 2015 May; 396(5):465-82. PubMed ID: 25720067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of thiol-based redox switch processes in parasites - facts and future.
    Rahbari M; Diederich K; Becker K; Krauth-Siegel RL; Jortzik E
    Biol Chem; 2015 May; 396(5):445-63. PubMed ID: 25741735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling functions of reactive oxygen species.
    Forman HJ; Maiorino M; Ursini F
    Biochemistry; 2010 Feb; 49(5):835-42. PubMed ID: 20050630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-thiol oxidation, from single proteins to proteome-wide analyses.
    Le Moan N; Tacnet F; Toledano MB
    Methods Mol Biol; 2008; 476():181-98. PubMed ID: 19157017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol chemistry and specificity in redox signaling.
    Winterbourn CC; Hampton MB
    Free Radic Biol Med; 2008 Sep; 45(5):549-61. PubMed ID: 18544350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-catalyzed oxidation of protein-bound dopamine.
    Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K
    Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
    Nagahara N
    Amino Acids; 2011 Jun; 41(1):59-72. PubMed ID: 20177947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species.
    Miki H; Funato Y
    J Biochem; 2012 Mar; 151(3):255-61. PubMed ID: 22287686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface.
    Luebke JL; Giedroc DP
    Biochemistry; 2015 Jun; 54(21):3235-49. PubMed ID: 25946648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.