These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25719463)

  • 1. Methods for microbiological quality assessment in drinking water: a comparative study.
    Helmi K; Barthod F; Méheut G; Henry A; Poty F; Laurent F; Charni-Ben-Tabassi N
    J Water Health; 2015 Mar; 13(1):34-41. PubMed ID: 25719463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater.
    Li CS; Chia WC; Chen PS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):195-203. PubMed ID: 17182391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.
    Van Nevel S; Koetzsch S; Proctor CR; Besmer MD; Prest EI; Vrouwenvelder JS; Knezev A; Boon N; Hammes F
    Water Res; 2017 Apr; 113():191-206. PubMed ID: 28214393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.
    Prest EI; El-Chakhtoura J; Hammes F; Saikaly PE; van Loosdrecht MC; Vrouwenvelder JS
    Water Res; 2014 Oct; 63():179-89. PubMed ID: 25000200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
    Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T
    Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria.
    Phe MH; Dossot M; Guilloteau H; Block JC
    Water Res; 2005 Sep; 39(15):3618-28. PubMed ID: 16081129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometry for immediate follow-up of drinking water networks after maintenance.
    Van Nevel S; Buysschaert B; De Roy K; De Gusseme B; Clement L; Boon N
    Water Res; 2017 Mar; 111():66-73. PubMed ID: 28043001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing flow cytometry with culture-based methods for microbial monitoring and as a diagnostic tool for assessing drinking water treatment processes.
    Cheswick R; Cartmell E; Lee S; Upton A; Weir P; Moore G; Nocker A; Jefferson B; Jarvis P
    Environ Int; 2019 Sep; 130():104893. PubMed ID: 31226555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.
    Prest EI; Hammes F; Kötzsch S; van Loosdrecht MC; Vrouwenvelder JS
    Water Res; 2013 Dec; 47(19):7131-42. PubMed ID: 24183559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
    Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS
    PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis.
    Hammes F; Broger T; Weilenmann HU; Vital M; Helbing J; Bosshart U; Huber P; Odermatt RP; Sonnleitner B
    Cytometry A; 2012 Jun; 81(6):508-16. PubMed ID: 22489027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid, cultivation-independent assessment of microbial viability in drinking water.
    Berney M; Vital M; Hülshoff I; Weilenmann HU; Egli T; Hammes F
    Water Res; 2008 Aug; 42(14):4010-8. PubMed ID: 18694583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applicability of solid-phase cytometry and epifluorescence microscopy for rapid assessment of the microbiological quality of dialysis water.
    Riepl M; Schauer S; Knetsch S; Holzhammer E; Farnleitner AH; Sommer R; Kirschner AK
    Nephrol Dial Transplant; 2011 Nov; 26(11):3640-5. PubMed ID: 21948860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems.
    Bernard L; Courties C; Duperray C; Schäfer H; Muyzer G; Lebaron P
    Cytometry; 2001 Apr; 43(4):314-21. PubMed ID: 11260599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and automated detection of fluorescent total bacteria in water samples.
    Lepeuple AS; Gilouppe S; Pierlot E; De Roubin MR
    Int J Food Microbiol; 2004 May; 92(3):327-32. PubMed ID: 15145591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments.
    Duhamel S; Jacquet S
    J Microbiol Methods; 2006 Mar; 64(3):316-32. PubMed ID: 16081175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of flow cytometry for microbial water quality monitoring in cooling tower water and oxidizing biocide treatment efficiency.
    Helmi K; David F; Di Martino P; Jaffrezic MP; Ingrand V
    J Microbiol Methods; 2018 Sep; 152():201-209. PubMed ID: 29958908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaerosol characterization by flow cytometry with fluorochrome.
    Chen PS; Li CS
    J Environ Monit; 2005 Oct; 7(10):950-9. PubMed ID: 16193165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological instability in a chlorinated drinking water distribution network.
    Nescerecka A; Rubulis J; Vital M; Juhna T; Hammes F
    PLoS One; 2014; 9(5):e96354. PubMed ID: 24796923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, optical, on-line bacteria sensor for monitoring drinking water quality.
    Højris B; Christensen SC; Albrechtsen HJ; Smith C; Dahlqvist M
    Sci Rep; 2016 Apr; 6():23935. PubMed ID: 27040142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.