BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1817 related articles for article (PubMed ID: 25719670)

  • 1. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent Solutions to High-Dimensional Multitask Reinforcement Learning.
    Kelly S; Heywood MI
    Evol Comput; 2018; 26(3):347-380. PubMed ID: 29932363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
    Silver D; Hubert T; Schrittwieser J; Antonoglou I; Lai M; Guez A; Lanctot M; Sifre L; Kumaran D; Graepel T; Lillicrap T; Simonyan K; Hassabis D
    Science; 2018 Dec; 362(6419):1140-1144. PubMed ID: 30523106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goal-directed learning of features and forward models.
    Saeb S; Weber C; Triesch J
    Neural Netw; 2009; 22(5-6):586-92. PubMed ID: 19616917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous reinforcement learning with experience replay.
    Wawrzyński P; Tanwani AK
    Neural Netw; 2013 May; 41():156-67. PubMed ID: 23237972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning With Low-Complexity Liquid State Machines.
    Ponghiran W; Srinivasan G; Roy K
    Front Neurosci; 2019; 13():883. PubMed ID: 31507361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement learning in supply chains.
    Valluri A; North MJ; Macal CM
    Int J Neural Syst; 2009 Oct; 19(5):331-44. PubMed ID: 19885962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-level performance in 3D multiplayer games with population-based reinforcement learning.
    Jaderberg M; Czarnecki WM; Dunning I; Marris L; Lever G; Castañeda AG; Beattie C; Rabinowitz NC; Morcos AS; Ruderman A; Sonnerat N; Green T; Deason L; Leibo JZ; Silver D; Hassabis D; Kavukcuoglu K; Graepel T
    Science; 2019 May; 364(6443):859-865. PubMed ID: 31147514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
    Vinyals O; Babuschkin I; Czarnecki WM; Mathieu M; Dudzik A; Chung J; Choi DH; Powell R; Ewalds T; Georgiev P; Oh J; Horgan D; Kroiss M; Danihelka I; Huang A; Sifre L; Cai T; Agapiou JP; Jaderberg M; Vezhnevets AS; Leblond R; Pohlen T; Dalibard V; Budden D; Sulsky Y; Molloy J; Paine TL; Gulcehre C; Wang Z; Pfaff T; Wu Y; Ring R; Yogatama D; Wünsch D; McKinney K; Smith O; Schaul T; Lillicrap T; Kavukcuoglu K; Hassabis D; Apps C; Silver D
    Nature; 2019 Nov; 575(7782):350-354. PubMed ID: 31666705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiagent cooperation and competition with deep reinforcement learning.
    Tampuu A; Matiisen T; Kodelja D; Kuzovkin I; Korjus K; Aru J; Aru J; Vicente R
    PLoS One; 2017; 12(4):e0172395. PubMed ID: 28380078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiagent reinforcement learning: spiking and nonspiking agents in the iterated Prisoner's Dilemma.
    Vassiliades V; Cleanthous A; Christodoulou C
    IEEE Trans Neural Netw; 2011 Apr; 22(4):639-53. PubMed ID: 21421435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments.
    Cross L; Cockburn J; Yue Y; O'Doherty JP
    Neuron; 2021 Feb; 109(4):724-738.e7. PubMed ID: 33326755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mastering the game of Go with deep neural networks and tree search.
    Silver D; Huang A; Maddison CJ; Guez A; Sifre L; van den Driessche G; Schrittwieser J; Antonoglou I; Panneershelvam V; Lanctot M; Dieleman S; Grewe D; Nham J; Kalchbrenner N; Sutskever I; Lillicrap T; Leach M; Kavukcuoglu K; Graepel T; Hassabis D
    Nature; 2016 Jan; 529(7587):484-9. PubMed ID: 26819042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network formation: neighborhood structures, establishment costs, and distributed learning.
    Chasparis GC; Shamma JS
    IEEE Trans Cybern; 2013 Dec; 43(6):1950-62. PubMed ID: 23757585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can classic Atari video games tell us about the human brain?
    Köster R; Chadwick MJ
    Neuron; 2021 Feb; 109(4):568-570. PubMed ID: 33600753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2018 Nov; 107():3-11. PubMed ID: 29395652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward-predictive representations generalize across tasks in reinforcement learning.
    Lehnert L; Littman ML; Frank MJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008317. PubMed ID: 33057329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mastering the game of Go without human knowledge.
    Silver D; Schrittwieser J; Simonyan K; Antonoglou I; Huang A; Guez A; Hubert T; Baker L; Lai M; Bolton A; Chen Y; Lillicrap T; Hui F; Sifre L; van den Driessche G; Graepel T; Hassabis D
    Nature; 2017 Oct; 550(7676):354-359. PubMed ID: 29052630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 91.