These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25719789)

  • 1. Physical activity assessment in the general population; instrumental methods and new technologies.
    Aparicio-Ugarriza R; Mielgo-Ayuso J; Benito PJ; Pedrero-Chamizo R; Ara I; González-Gross M;
    Nutr Hosp; 2015 Feb; 31 Suppl 3():219-26. PubMed ID: 25719789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical activity assessment in children and adolescents.
    Sirard JR; Pate RR
    Sports Med; 2001; 31(6):439-54. PubMed ID: 11394563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validating accelerometry as a measure of physical activity and energy expenditure in chronic stroke.
    Serra MC; Balraj E; DiSanzo BL; Ivey FM; Hafer-Macko CE; Treuth MS; Ryan AS
    Top Stroke Rehabil; 2017 Jan; 24(1):18-23. PubMed ID: 27322733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerometers and pedometers: methodology and clinical application.
    Corder K; Brage S; Ekelund U
    Curr Opin Clin Nutr Metab Care; 2007 Sep; 10(5):597-603. PubMed ID: 17693743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of pedometers for assessing physical activity: convergent validity.
    Tudor-Locke C; Williams JE; Reis JP; Pluto D
    Sports Med; 2002; 32(12):795-808. PubMed ID: 12238942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase?
    Mandigout S; Lacroix J; Ferry B; Vuillerme N; Compagnat M; Daviet JC
    Eur J Prev Cardiol; 2017 Dec; 24(18):2009-2016. PubMed ID: 29067851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart approaches for assessing free-living energy expenditure following identification of types of physical activity.
    Plasqui G
    Obes Rev; 2017 Feb; 18 Suppl 1():50-55. PubMed ID: 28164455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical activity assessment in the general population; validated self-report methods.
    Ara I; Aparicio-Ugarriza R; Morales-Barco D; Nascimento de Souza W; Mata E; González-Gross M
    Nutr Hosp; 2015 Feb; 31 Suppl 3():211-8. PubMed ID: 25719788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of vigorous and non-vigorous activity on daily energy expenditure.
    Westerterp KR
    Proc Nutr Soc; 2003 Aug; 62(3):645-50. PubMed ID: 14692600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily physical activity assessment with accelerometers: new insights and validation studies.
    Plasqui G; Bonomi AG; Westerterp KR
    Obes Rev; 2013 Jun; 14(6):451-62. PubMed ID: 23398786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and reliability of two activity monitors for energy expenditure assessment.
    Brazeau AS; Beaudoin N; Bélisle V; Messier V; Karelis AD; Rabasa-Lhoret R
    J Sci Med Sport; 2016 Jan; 19(1):46-50. PubMed ID: 25466490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined triaxial accelerometry and heart rate telemetry for the physiological characterization of Latin dance in non-professional adults.
    Domene PA; Easton C
    J Dance Med Sci; 2014 Mar; 18(1):29-36. PubMed ID: 24568801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The current state of physical activity assessment tools.
    Ainsworth B; Cahalin L; Buman M; Ross R
    Prog Cardiovasc Dis; 2015; 57(4):387-95. PubMed ID: 25446555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of physical activity in children with particular reference to the use of heart rate and pedometry.
    Rowlands AV; Eston RG; Ingledew DK
    Sports Med; 1997 Oct; 24(4):258-72. PubMed ID: 9339494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved estimation of energy expenditure by artificial neural network modeling.
    Hay DC; Wakayama A; Sakamura K; Fukashiro S
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1213-22. PubMed ID: 19088780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial sensors to estimate the energy expenditure of team-sport athletes.
    Walker EJ; McAinch AJ; Sweeting A; Aughey RJ
    J Sci Med Sport; 2016 Feb; 19(2):177-81. PubMed ID: 25804422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
    Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C
    J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.