BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

786 related articles for article (PubMed ID: 25719868)

  • 1. The Hippo Pathway and YAP/TAZ-TEAD Protein-Protein Interaction as Targets for Regenerative Medicine and Cancer Treatment.
    Santucci M; Vignudelli T; Ferrari S; Mor M; Scalvini L; Bolognesi ML; Uliassi E; Costi MP
    J Med Chem; 2015 Jun; 58(12):4857-73. PubMed ID: 25719868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YAP/TAZ for cancer therapy: opportunities and challenges (review).
    Guo L; Teng L
    Int J Oncol; 2015 Apr; 46(4):1444-52. PubMed ID: 25652178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the acylation of TEAD4 on its interaction with co-activators YAP and TAZ.
    Mesrouze Y; Meyerhofer M; Bokhovchuk F; Fontana P; Zimmermann C; Martin T; Delaunay C; Izaac A; Kallen J; Schmelzle T; Erdmann D; Chène P
    Protein Sci; 2017 Dec; 26(12):2399-2409. PubMed ID: 28960584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review.
    Crawford JJ; Bronner SM; Zbieg JR
    Expert Opin Ther Pat; 2018 Dec; 28(12):867-873. PubMed ID: 30482112
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation.
    Lin KC; Moroishi T; Meng Z; Jeong HS; Plouffe SW; Sekido Y; Han J; Park HW; Guan KL
    Nat Cell Biol; 2017 Jul; 19(8):996-1002. PubMed ID: 28752853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.
    Shimomura T; Miyamura N; Hata S; Miura R; Hirayama J; Nishina H
    Biochem Biophys Res Commun; 2014 Jan; 443(3):917-23. PubMed ID: 24380865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine S-Glutathionylation Promotes Stability and Activation of the Hippo Downstream Effector Transcriptional Co-activator with PDZ-binding Motif (TAZ).
    Gandhirajan RK; Jain M; Walla B; Johnsen M; Bartram MP; Huynh Anh M; Rinschen MM; Benzing T; Schermer B
    J Biol Chem; 2016 May; 291(22):11596-607. PubMed ID: 27048650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the YAP and TEAD complex.
    Li Z; Zhao B; Wang P; Chen F; Dong Z; Yang H; Guan KL; Xu Y
    Genes Dev; 2010 Feb; 24(3):235-40. PubMed ID: 20123905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis.
    Moroishi T; Park HW; Qin B; Chen Q; Meng Z; Plouffe SW; Taniguchi K; Yu FX; Karin M; Pan D; Guan KL
    Genes Dev; 2015 Jun; 29(12):1271-84. PubMed ID: 26109050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of YAP recognition by TEAD4 in the hippo pathway.
    Chen L; Chan SW; Zhang X; Walsh M; Lim CJ; Hong W; Song H
    Genes Dev; 2010 Feb; 24(3):290-300. PubMed ID: 20123908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of TAZ-TEAD complex reveals a distinct interaction mode from that of YAP-TEAD complex.
    Kaan HYK; Chan SW; Tan SKJ; Guo F; Lim CJ; Hong W; Song H
    Sci Rep; 2017 May; 7(1):2035. PubMed ID: 28515457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine.
    Moya IM; Halder G
    Nat Rev Mol Cell Biol; 2019 Apr; 20(4):211-226. PubMed ID: 30546055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides.
    Zhou Z; Hu T; Xu Z; Lin Z; Zhang Z; Feng T; Zhu L; Rong Y; Shen H; Luk JM; Zhang X; Qin N
    FASEB J; 2015 Feb; 29(2):724-32. PubMed ID: 25384421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy.
    Pobbati AV; Hong W
    Theranostics; 2020; 10(8):3622-3635. PubMed ID: 32206112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TEAD4-YAP/TAZ protein-protein interaction: expected similarities and unexpected differences.
    Hau JC; Erdmann D; Mesrouze Y; Furet P; Fontana P; Zimmermann C; Schmelzle T; Hofmann F; Chène P
    Chembiochem; 2013 Jul; 14(10):1218-25. PubMed ID: 23780915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer.
    Jung O; Baek MJ; Wooldrik C; Johnson KR; Fisher KW; Lou J; Ricks TJ; Wen T; Best MD; Cryns VL; Anderson RA; Choi S
    EMBO J; 2024 May; 43(9):1740-1769. PubMed ID: 38565949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.
    Jang JW; Kim MK; Bae SC
    Small GTPases; 2020 Jul; 11(4):280-288. PubMed ID: 29457552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of signaling pathways regulating YAP/TAZ activity.
    Heng BC; Zhang X; Aubel D; Bai Y; Li X; Wei Y; Fussenegger M; Deng X
    Cell Mol Life Sci; 2021 Jan; 78(2):497-512. PubMed ID: 32748155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies.
    Kim MH; Kim J
    Cell Mol Life Sci; 2017 Apr; 74(8):1457-1474. PubMed ID: 27826640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression.
    Rashidian J; Le Scolan E; Ji X; Zhu Q; Mulvihill MM; Nomura D; Luo K
    Sci Signal; 2015 Feb; 8(363):ra14. PubMed ID: 25670202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.