These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25720068)

  • 21. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice.
    Swain L; Kesemeyer A; Meyer-Roxlau S; Vettel C; Zieseniss A; Güntsch A; Jatho A; Becker A; Nanadikar MS; Morgan B; Dennerlein S; Shah AM; El-Armouche A; Nikolaev VO; Katschinski DM
    Circ Res; 2016 Oct; 119(9):1004-1016. PubMed ID: 27553648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution imaging of Ca2+ , redox status, ROS and pH using GFP biosensors.
    Choi WG; Swanson SJ; Gilroy S
    Plant J; 2012 Apr; 70(1):118-28. PubMed ID: 22449047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescent proteins as sensors for cellular functions.
    Griesbeck O
    Curr Opin Neurobiol; 2004 Oct; 14(5):636-41. PubMed ID: 15464898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond the Cuvette: Redox Indicators in Biological Experiments.
    Pouvreau S
    Antioxid Redox Signal; 2016 Sep; 25(9):517-9. PubMed ID: 27418437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RoGFP1 is a quantitative biosensor in maize cells for cellular redox changes caused by environmental and endogenous stimuli.
    Liu X; Wu J; Liu H; Zong N; Zhao J
    Biochem Biophys Res Commun; 2014 Sep; 452(3):503-8. PubMed ID: 25173931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Genetically Encoded Fluorescent Redox Sensors].
    Bilan DS; Lukyanov SA; Belousov VV
    Bioorg Khim; 2015; 41(3):259-74. PubMed ID: 26502603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescent protein-based redox probes.
    Meyer AJ; Dick TP
    Antioxid Redox Signal; 2010 Sep; 13(5):621-50. PubMed ID: 20088706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetically encoded fluorescent indicators for live cell pH imaging.
    Martynov VI; Pakhomov AA; Deyev IE; Petrenko AG
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2924-2939. PubMed ID: 30279147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging calcium and redox signals using genetically encoded fluorescent indicators.
    Gibhardt CS; Zimmermann KM; Zhang X; Belousov VV; Bogeski I
    Cell Calcium; 2016 Aug; 60(2):55-64. PubMed ID: 27142890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response properties of the genetically encoded optical H2O2 sensor HyPer.
    Weller J; Kizina KM; Can K; Bao G; Müller M
    Free Radic Biol Med; 2014 Nov; 76():227-41. PubMed ID: 25179473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
    Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ
    J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans.
    Braeckman BP; Smolders A; Back P; De Henau S
    Antioxid Redox Signal; 2016 Oct; 25(10):577-92. PubMed ID: 27306519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic, semi-quantitative imaging of intracellular ROS levels and redox status in rat hippocampal neurons.
    Funke F; Gerich FJ; Müller M
    Neuroimage; 2011 Feb; 54(4):2590-602. PubMed ID: 21081169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy.
    Kostyuk AI; Rapota DD; Morozova KI; Fedotova AA; Jappy D; Semyanov AV; Belousov VV; Brazhe NA; Bilan DS
    Free Radic Biol Med; 2024 May; 217():68-115. PubMed ID: 38508405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subcellular ROS imaging methods: Relevance for the study of calcium signaling.
    Booth DM; Joseph SK; Hajnóczky G
    Cell Calcium; 2016 Aug; 60(2):65-73. PubMed ID: 27209367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo imaging of synaptogenesis in zebrafish.
    Jontes JD; Emond MR
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic Organisms Meet Redox Bioimaging: One Step Closer to Physiology.
    Swain L; Nanadikar MS; Borowik S; Zieseniss A; Katschinski DM
    Antioxid Redox Signal; 2018 Aug; 29(6):603-612. PubMed ID: 29320870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetically encoded fluorescent probe for the selective detection of peroxynitrite.
    Chen ZJ; Ren W; Wright QE; Ai HW
    J Am Chem Soc; 2013 Oct; 135(40):14940-3. PubMed ID: 24059533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.