BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 25720121)

  • 1. Thiol-based redox switches in prokaryotes.
    Hillion M; Antelmann H
    Biol Chem; 2015 May; 396(5):415-44. PubMed ID: 25720121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-based redox switches and gene regulation.
    Antelmann H; Helmann JD
    Antioxid Redox Signal; 2011 Mar; 14(6):1049-63. PubMed ID: 20626317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MarR/DUF24-Family QsrR Repressor Senses Quinones and Oxidants by Thiol Switch Mechanisms in
    Fritsch VN; Loi VV; Kuropka B; Gruhlke M; Weise C; Antelmann H
    Antioxid Redox Signal; 2023 May; 38(13-15):877-895. PubMed ID: 36242097
    [No Abstract]   [Full Text] [Related]  

  • 4. Thiol-based redox switches in the major pathogen
    Linzner N; Loi VV; Fritsch VN; Antelmann H
    Biol Chem; 2021 Feb; 402(3):333-361. PubMed ID: 33544504
    [No Abstract]   [Full Text] [Related]  

  • 5. Redox active thiol sensors of oxidative and nitrosative stress.
    Vázquez-Torres A
    Antioxid Redox Signal; 2012 Nov; 17(9):1201-14. PubMed ID: 22257022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two distinct mechanisms of transcriptional regulation by the redox sensor YodB.
    Lee SJ; Lee IG; Lee KY; Kim DG; Eun HJ; Yoon HJ; Chae S; Song SH; Kang SO; Seo MD; Kim HS; Park SJ; Lee BJ
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5202-11. PubMed ID: 27531959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus.
    Loi VV; Busche T; Tedin K; Bernhardt J; Wollenhaupt J; Huyen NTT; Weise C; Kalinowski J; Wahl MC; Fulde M; Antelmann H
    Antioxid Redox Signal; 2018 Sep; 29(7):615-636. PubMed ID: 29237286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics.
    Chi BK; Gronau K; Mäder U; Hessling B; Becher D; Antelmann H
    Mol Cell Proteomics; 2011 Nov; 10(11):M111.009506. PubMed ID: 21749987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors.
    Lee SJ; Kim DG; Lee KY; Koo JS; Lee BJ
    Arch Pharm Res; 2018 Jun; 41(6):583-593. PubMed ID: 29777359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR.
    Palm GJ; Khanh Chi B; Waack P; Gronau K; Becher D; Albrecht D; Hinrichs W; Read RJ; Antelmann H
    Nucleic Acids Res; 2012 May; 40(9):4178-92. PubMed ID: 22238377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-based redox switches.
    Groitl B; Jakob U
    Biochim Biophys Acta; 2014 Aug; 1844(8):1335-43. PubMed ID: 24657586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds.
    Lee KL; Yoo JS; Oh GS; Singh AK; Roe JH
    Front Microbiol; 2017; 8():139. PubMed ID: 28210250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation in host-pathogen interactions: thiol switches and beyond.
    Varatnitskaya M; Degrossoli A; Leichert LI
    Biol Chem; 2021 Feb; 402(3):299-316. PubMed ID: 33021957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus aureus responds to allicin by global S-thioallylation - Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress.
    Loi VV; Huyen NTT; Busche T; Tung QN; Gruhlke MCH; Kalinowski J; Bernhardt J; Slusarenko AJ; Antelmann H
    Free Radic Biol Med; 2019 Aug; 139():55-69. PubMed ID: 31121222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxide-sensing transcriptional regulators in bacteria.
    Dubbs JM; Mongkolsuk S
    J Bacteriol; 2012 Oct; 194(20):5495-503. PubMed ID: 22797754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol-based functional mimicry of phosphorylation of the two-component system response regulator ArcA promotes pathogenesis in enteric pathogens.
    Zhou Y; Pu Q; Chen J; Hao G; Gao R; Ali A; Hsiao A; Stock AM; Goulian M; Zhu J
    Cell Rep; 2021 Dec; 37(12):110147. PubMed ID: 34936880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sense and sensor ability: redox-responsive regulators in Listeria monocytogenes.
    Ruhland BR; Reniere ML
    Curr Opin Microbiol; 2019 Feb; 47():20-25. PubMed ID: 30412828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox signaling in human pathogens.
    Chen PR; Brugarolas P; He C
    Antioxid Redox Signal; 2011 Mar; 14(6):1107-18. PubMed ID: 20578795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.