These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25720499)
1. Sensing of enantiomeric excess in chiral carboxylic acids. Akdeniz A; Mosca L; Minami T; Anzenbacher P Chem Commun (Camb); 2015 Apr; 51(26):5770-3. PubMed ID: 25720499 [TBL] [Abstract][Full Text] [Related]
2. Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples. Hashim NH; Khan SJ J Chromatogr A; 2011 Jul; 1218(29):4746-54. PubMed ID: 21645900 [TBL] [Abstract][Full Text] [Related]
3. Enantiospecific fate of ibuprofen, ketoprofen and naproxen in a laboratory-scale membrane bioreactor. Hashim NH; Nghiem LD; Stuetz RM; Khan SJ Water Res; 2011 Nov; 45(18):6249-58. PubMed ID: 21974875 [TBL] [Abstract][Full Text] [Related]
4. Identification of the carboxylic acid functionality by using electrospray ionization and ion-molecule reactions in a modified linear quadrupole ion trap mass spectrometer. Habicht SC; Vinueza NR; Archibold EF; Duan P; Kenttämaa HI Anal Chem; 2008 May; 80(9):3416-21. PubMed ID: 18363408 [TBL] [Abstract][Full Text] [Related]
5. A fluorescent chiral chemosensor for the recognition of the two enantiomers of chiral carboxylates. Li Y; Tamilavan V; Hyun MH Chirality; 2012 May; 24(5):406-11. PubMed ID: 22514035 [TBL] [Abstract][Full Text] [Related]
6. 1-(5-Dimethylamino-1-naphthalenesulphonyl)-(S)-3-aminopyrrolidine (DNS-Apy) as a fluorescence chiral labelling reagent for carboxylic acid enantiomers. al-Kindy S; Santa T; Fukushima T; Homma H; Imai K Biomed Chromatogr; 1997; 11(3):137-42. PubMed ID: 9192105 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China. Ma R; Qu H; Wang B; Wang F; Yu Y; Yu G Ecotoxicol Environ Saf; 2019 Jun; 174():83-91. PubMed ID: 30822671 [TBL] [Abstract][Full Text] [Related]
8. An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives. Wolf C; Liu S; Reinhardt BC Chem Commun (Camb); 2006 Oct; (40):4242-4. PubMed ID: 17031445 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry. Caballo C; Sicilia MD; Rubio S Talanta; 2015 Mar; 134():325-332. PubMed ID: 25618675 [TBL] [Abstract][Full Text] [Related]
10. Biofilm controlled sorption of selected acidic drugs on river sediments characterized by different organic carbon content. Dobor J; Varga M; Záray G Chemosphere; 2012 Apr; 87(2):105-10. PubMed ID: 22192794 [TBL] [Abstract][Full Text] [Related]
11. Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. Zhang Y; Price GW; Jamieson R; Burton D; Khosravi K Chemosphere; 2017 May; 174():628-637. PubMed ID: 28199939 [TBL] [Abstract][Full Text] [Related]
12. Enantioselective sensing of chiral carboxylic acids. Mei X; Wolf C J Am Chem Soc; 2004 Nov; 126(45):14736-7. PubMed ID: 15535695 [TBL] [Abstract][Full Text] [Related]
13. The role of the acquisition methods in the analysis of the non-steroidal anti-inflammatory drugs in Danube River by gas chromatography-mass spectrometry. Helenkár A; Sebok A; Záray G; Molnár-Perl I; Vasanits-Zsigrai A Talanta; 2010 Jul; 82(2):600-7. PubMed ID: 20602942 [TBL] [Abstract][Full Text] [Related]
14. Identification and quantification of ibuprofen, naproxen, ketoprofen and diclofenac present in waste-waters, as their trimethylsilyl derivatives, by gas chromatography mass spectrometry. Sebok A; Vasanits-Zsigrai A; Palkó G; Záray G; Molnár-Perl I Talanta; 2008 Jul; 76(3):642-50. PubMed ID: 18585333 [TBL] [Abstract][Full Text] [Related]
15. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Landry KA; Sun P; Huang CH; Boyer TH Water Res; 2015 Jan; 68():510-21. PubMed ID: 25462757 [TBL] [Abstract][Full Text] [Related]
16. Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment. Nguyen LN; Hai FI; McDonald JA; Khan SJ; Price WE; Nghiem LD Water Sci Technol; 2017 Oct; 76(7-8):1816-1826. PubMed ID: 28991796 [TBL] [Abstract][Full Text] [Related]
17. Self-Assembled Binuclear Cu(II)-Histidine Complex for Absolute Configuration and Enantiomeric Excess Determination of Naproxen by Tandem Mass Spectrometry. Yu X; Chau MC; Tang WK; Siu CK; Yao ZP Anal Chem; 2018 Mar; 90(6):4089-4097. PubMed ID: 29455521 [TBL] [Abstract][Full Text] [Related]
18. Determination of non-steroidal anti-inflammatory drugs in sewage sludge by direct hollow fiber supported liquid membrane extraction and liquid chromatography-mass spectrometry. Sagristà E; Larsson E; Ezoddin M; Hidalgo M; Salvadó V; Jönsson JA J Chromatogr A; 2010 Oct; 1217(40):6153-8. PubMed ID: 20810117 [TBL] [Abstract][Full Text] [Related]
19. Sensing chiral drugs by using CdSe/ZnS nanoparticles capped with N-acetyl-L-cysteine methyl ester. Delgado-Pérez T; Bouchet LM; de la Guardia M; Galian RE; Pérez-Prieto J Chemistry; 2013 Aug; 19(33):11068-76. PubMed ID: 23813622 [TBL] [Abstract][Full Text] [Related]
20. Enantioselective fluorescent sensors: a tale of BINOL. Pu L Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]