These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25720550)

  • 1. Solution structure and DNA binding of the catalytic domain of the large serine resolvase TnpX.
    Headey SJ; Sivakumaran A; Adams V; Lyras D; Rood JI; Scanlon MJ; Wilce MC
    J Mol Recognit; 2015 May; 28(5):316-24. PubMed ID: 25720550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the structural and functional domains of the large serine recombinase TnpX from Clostridium perfringens.
    Lucet IS; Tynan FE; Adams V; Rossjohn J; Lyras D; Rood JI
    J Biol Chem; 2005 Jan; 280(4):2503-11. PubMed ID: 15542858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct regions of the large serine recombinase TnpX are required for DNA binding and biological function.
    Adams V; Lucet IS; Tynan FE; Chiarezza M; Howarth PM; Kim J; Rossjohn J; Lyras D; Rood JI
    Mol Microbiol; 2006 May; 60(3):591-601. PubMed ID: 16629663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule.
    Bannam TL; Crellin PK; Rood JI
    Mol Microbiol; 1995 May; 16(3):535-51. PubMed ID: 7565113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451.
    Crellin PK; Rood JI
    J Bacteriol; 1997 Aug; 179(16):5148-56. PubMed ID: 9260958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA binding properties of TnpX indicate that different synapses are formed in the excision and integration of the Tn4451 family.
    Adams V; Lucet IS; Lyras D; Rood JI
    Mol Microbiol; 2004 Aug; 53(4):1195-207. PubMed ID: 15306021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX.
    Lyras D; Rood JI
    Mol Microbiol; 2000 Nov; 38(3):588-601. PubMed ID: 11069682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of the catalytic domain of gammadelta resolvase. Implications for the mechanism of catalysis.
    Pan B; Maciejewski MW; Marintchev A; Mullen GP
    J Mol Biol; 2001 Jul; 310(5):1089-107. PubMed ID: 11501998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The large resolvase TnpX is the only transposon-encoded protein required for transposition of the Tn4451/3 family of integrative mobilizable elements.
    Lyras D; Adams V; Lucet I; Rood JI
    Mol Microbiol; 2004 Mar; 51(6):1787-800. PubMed ID: 15009902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of the clostridial site-specific recombinase TnpX to clone toxic-product-encoding genes and selectively remove genomic DNA fragments.
    Adams V; Bantwal R; Stevenson L; Cheung JK; Awad MM; Nicholson J; Carter GP; Mackin KE; Rood JI; Lyras D
    Appl Environ Microbiol; 2014 Jun; 80(12):3597-3603. PubMed ID: 24682304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX.
    Wang H; Roberts AP; Lyras D; Rood JI; Wilks M; Mullany P
    J Bacteriol; 2000 Jul; 182(13):3775-83. PubMed ID: 10850994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens.
    Lyras D; Storie C; Huggins AS; Crellin PK; Bannam TL; Rood JI
    Antimicrob Agents Chemother; 1998 Jul; 42(7):1563-7. PubMed ID: 9660983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity in the serine recombinases.
    Smith MC; Thorpe HM
    Mol Microbiol; 2002 Apr; 44(2):299-307. PubMed ID: 11972771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeric recombinases with designed DNA sequence recognition.
    Akopian A; He J; Boocock MR; Stark WM
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8688-91. PubMed ID: 12837939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards understanding the molecular recognition process in prokaryotic zinc-finger domain.
    Russo L; Palmieri M; Caso JV; D'Abrosca G; Diana D; Malgieri G; Baglivo I; Isernia C; Pedone PV; Fattorusso R
    Eur J Med Chem; 2015 Feb; 91():100-8. PubMed ID: 25240418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching catalytic activity in the XerCD site-specific recombination machine.
    Ferreira H; Sherratt D; Arciszewska L
    J Mol Biol; 2001 Sep; 312(1):45-57. PubMed ID: 11545584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In silico structural characterization and molecular docking studies of first glucuronoxylan-xylanohydrolase (Xyn30a) from family-30 glycosyl hydrolase (GH30) from Clostridium thermocellum].
    Verma AK; Goyal A
    Mol Biol (Mosk); 2014; 48(2):322-32. PubMed ID: 25850302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis.
    Cao Y; Hallet B; Sherratt DJ; Hayes F
    J Mol Biol; 1997 Nov; 274(1):39-53. PubMed ID: 9398514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site.
    Wang H; Smith MC; Mullany P
    J Bacteriol; 2006 Jul; 188(13):4871-8. PubMed ID: 16788196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.