These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 25720668)
1. Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation. Zhong L; Truex MJ; Kananizadeh N; Li Y; Lea AS; Yan X J Contam Hydrol; 2015; 175-176():17-25. PubMed ID: 25720668 [TBL] [Abstract][Full Text] [Related]
2. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. Zhong L; Oostrom M; Truex MJ; Vermeul VR; Szecsody JE J Hazard Mater; 2013 Jan; 244-245():160-70. PubMed ID: 23246952 [TBL] [Abstract][Full Text] [Related]
3. Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry. Tosco T; Gastone F; Sethi R J Contam Hydrol; 2014 Oct; 166():34-51. PubMed ID: 25063698 [TBL] [Abstract][Full Text] [Related]
4. Guar gum solutions for improved delivery of iron particles in porous media (part 1): porous medium rheology and guar gum-induced clogging. Gastone F; Tosco T; Sethi R J Contam Hydrol; 2014 Oct; 166():23-33. PubMed ID: 25065767 [TBL] [Abstract][Full Text] [Related]
5. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. Comba S; Dalmazzo D; Santagata E; Sethi R J Hazard Mater; 2011 Jan; 185(2-3):598-605. PubMed ID: 20952125 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the compatibility of xanthan gum (XG) and calcium polysulfide and the rheological properties of XG solutions. Liu D; Ren L; Wen C; Dong J Environ Technol; 2018 Mar; 39(5):607-615. PubMed ID: 28316256 [TBL] [Abstract][Full Text] [Related]
7. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media. Xin J; Tang F; Zheng X; Shao H; Kolditz O Water Res; 2016 Jan; 88():199-206. PubMed ID: 26497937 [TBL] [Abstract][Full Text] [Related]
8. Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion. Lee YC; Kwon TS; Yang JS; Yang JW J Hazard Mater; 2007 Feb; 140(1-2):340-5. PubMed ID: 17049732 [TBL] [Abstract][Full Text] [Related]
9. Transport and release of electron donors and alkalinity during reductive dechlorination by combined emulsified vegetable oil and colloidal Mg(OH) Dong J; Yu D; Li Y; Li B; Bao Q J Contam Hydrol; 2019 Aug; 225():103501. PubMed ID: 31150961 [TBL] [Abstract][Full Text] [Related]
10. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community. Dong J; Yu J; Bao Q Environ Sci Pollut Res Int; 2018 Dec; 25(34):34392-34402. PubMed ID: 30306441 [TBL] [Abstract][Full Text] [Related]
11. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables. Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134 [TBL] [Abstract][Full Text] [Related]
12. Injectable silica-permanganate gel as a slow-release MnO4(-) source for groundwater remediation: rheological properties and release dynamics. Yang S; Oostrom M; Truex MJ; Li G; Zhong L Environ Sci Process Impacts; 2016 Feb; 18(2):256-64. PubMed ID: 26766607 [TBL] [Abstract][Full Text] [Related]
13. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering. Salman M; Gerhard JI; Major DW; Pironi P; Hadden R J Hazard Mater; 2015 Mar; 285():346-55. PubMed ID: 25528233 [TBL] [Abstract][Full Text] [Related]
14. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Luna M; Gastone F; Tosco T; Sethi R; Velimirovic M; Gemoets J; Muyshondt R; Sapion H; Klaas N; Bastiaens L J Contam Hydrol; 2015 Oct; 181():46-58. PubMed ID: 25971233 [TBL] [Abstract][Full Text] [Related]
15. Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. Yap CL; Gan S; Ng HK J Hazard Mater; 2010 May; 177(1-3):28-41. PubMed ID: 20006435 [TBL] [Abstract][Full Text] [Related]
16. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach. Tosco T; Sethi R Environ Sci Technol; 2010 Dec; 44(23):9062-8. PubMed ID: 21058641 [TBL] [Abstract][Full Text] [Related]
17. Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. Zhong L; Szecsody J; Oostrom M; Truex M; Shen X; Li X J Hazard Mater; 2011 Jul; 191(1-3):249-57. PubMed ID: 21592663 [TBL] [Abstract][Full Text] [Related]
18. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. Borden RC J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158 [TBL] [Abstract][Full Text] [Related]
19. Injection of innocuous oils to create reactive barriers for bioremediation: laboratory studies. Hunter WJ J Contam Hydrol; 2005 Nov; 80(1-2):31-48. PubMed ID: 16102871 [TBL] [Abstract][Full Text] [Related]
20. The containment of oil spills in unconsolidated granular porous media using xanthan/Cr(III) and xanthan/Al(III) gels. Gioia F; Urciuolo M J Hazard Mater; 2004 Dec; 116(1-2):83-93. PubMed ID: 15561366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]