These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25720764)

  • 1. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.
    Pegalajar-Jurado A; Easton CD; Crawford RJ; McArthur SL
    Biointerphases; 2015 Mar; 10(1):011002. PubMed ID: 25720764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.
    Hsiao SW; Venault A; Yang HS; Chang Y
    Colloids Surf B Biointerfaces; 2014 Jun; 118():254-60. PubMed ID: 24794801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.
    Pingle H; Wang PY; Thissen H; McArthur S; Kingshott P
    Biointerphases; 2015 Dec; 10(4):04A309. PubMed ID: 26634448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water.
    Keum H; Kim JY; Yu B; Yu SJ; Kim J; Jeon H; Lee DY; Im SG; Jon S
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19736-19745. PubMed ID: 28569502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers.
    Abrigo M; Kingshott P; McArthur SL
    Biointerphases; 2015 Dec; 10(4):04A301. PubMed ID: 26251319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry.
    Epstein AK; Hochbaum AI; Kim P; Aizenberg J
    Nanotechnology; 2011 Dec; 22(49):494007. PubMed ID: 22101439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.
    Zhang J; Huang J; Say C; Dorit RL; Queeney KT
    J Colloid Interface Sci; 2018 Jun; 519():203-213. PubMed ID: 29500992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical methods for controlling bacterial colonization on polymer surfaces.
    Echeverria C; Torres MT; Fernández-García M; de la Fuente-Nunez C; Muñoz-Bonilla A
    Biotechnol Adv; 2020 Nov; 43():107586. PubMed ID: 32663616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp.
    Feng G; Cheng Y; Wang SY; Hsu LC; Feliz Y; Borca-Tasciuc DA; Worobo RW; Moraru CI
    Biofouling; 2014; 30(10):1253-68. PubMed ID: 25427545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties.
    Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal-Based Topographies.
    Pingle H; Wang PY; Thissen H; Kingshott P
    Small; 2018 Apr; 14(14):e1703574. PubMed ID: 29484803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopatterned polymer surfaces with bactericidal properties.
    Dickson MN; Liang EI; Rodriguez LA; Vollereaux N; Yee AF
    Biointerphases; 2015 Jun; 10(2):021010. PubMed ID: 26077558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attachment of Shiga toxigenic Escherichia coli to stainless steel.
    Rivas L; Fegan N; Dykes GA
    Int J Food Microbiol; 2007 Apr; 115(1):89-94. PubMed ID: 17207875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.
    Bandyopadhyay D; Prashar D; Luk YY
    Langmuir; 2011 May; 27(10):6124-31. PubMed ID: 21486002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Should I stay or should I go?' Bacterial attachment vs biofilm formation on surface-modified membranes.
    Bernstein R; Freger V; Lee JH; Kim YG; Lee J; Herzberg M
    Biofouling; 2014; 30(3):367-76. PubMed ID: 24579672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers.
    Khan MM; Ista LK; Lopez GP; Schuler AJ
    Environ Sci Technol; 2011 Feb; 45(3):1055-60. PubMed ID: 21189005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms.
    Bazaka K; Jacob MV; Crawford RJ; Ivanova EP
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):299-311. PubMed ID: 22618687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of shear on initial bacterial attachment in slow flowing systems.
    Wang H; Sodagari M; Ju LK; Zhang Newby BM
    Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability.
    Zhao C; Zheng J
    Biomacromolecules; 2011 Nov; 12(11):4071-9. PubMed ID: 21972885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.
    Zhang C; Liao Q; Chen R; Zhu X
    Biochem Biophys Res Commun; 2015 Jun; 461(4):671-6. PubMed ID: 25918022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.