These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Iwata H; Gaston A; Remay A; Thouroude T; Jeauffre J; Kawamura K; Oyant LH; Araki T; Denoyes B; Foucher F Plant J; 2012 Jan; 69(1):116-25. PubMed ID: 21895811 [TBL] [Abstract][Full Text] [Related]
9. Identification of flowering genes in strawberry, a perennial SD plant. Mouhu K; Hytönen T; Folta K; Rantanen M; Paulin L; Auvinen P; Elomaa P BMC Plant Biol; 2009 Sep; 9():122. PubMed ID: 19785732 [TBL] [Abstract][Full Text] [Related]
10. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria × ananassa. Nakano Y; Higuchi Y; Yoshida Y; Hisamatsu T J Plant Physiol; 2015 Apr; 177():60-66. PubMed ID: 25666540 [TBL] [Abstract][Full Text] [Related]
11. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Higuchi Y; Sage-Ono K; Sasaki R; Ohtsuki N; Hoshino A; Iida S; Kamada H; Ono M Plant Cell Physiol; 2011 Apr; 52(4):638-50. PubMed ID: 21382978 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry. Lei HJ; Yuan HZ; Liu Y; Guo XW; Liao X; Liu LL; Wang Q; Li TH Gene; 2013 Dec; 531(2):158-67. PubMed ID: 24055423 [TBL] [Abstract][Full Text] [Related]
13. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Fernández V; Takahashi Y; Le Gourrierec J; Coupland G Plant J; 2016 Jun; 86(5):426-40. PubMed ID: 27117775 [TBL] [Abstract][Full Text] [Related]
14. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Hayama R; Yokoi S; Tamaki S; Yano M; Shimamoto K Nature; 2003 Apr; 422(6933):719-22. PubMed ID: 12700762 [TBL] [Abstract][Full Text] [Related]
15. The regulation of seasonal flowering in the Rosaceae. Kurokura T; Mimida N; Battey NH; Hytönen T J Exp Bot; 2013 Nov; 64(14):4131-41. PubMed ID: 23929655 [TBL] [Abstract][Full Text] [Related]
16. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Jung JH; Ju Y; Seo PJ; Lee JH; Park CM Plant J; 2012 Feb; 69(4):577-88. PubMed ID: 21988498 [TBL] [Abstract][Full Text] [Related]
17. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Han SH; Yoo SC; Lee BD; An G; Paek NC Plant Cell Environ; 2015 Dec; 38(12):2527-40. PubMed ID: 25850808 [TBL] [Abstract][Full Text] [Related]
18. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. Allard V; Veisz O; Kõszegi B; Rousset M; Le Gouis J; Martre P J Exp Bot; 2012 Jan; 63(2):847-57. PubMed ID: 21994169 [TBL] [Abstract][Full Text] [Related]
19. Gibberellic Acid Signaling Is Required to Induce Flowering of Chrysanthemums Grown under Both Short and Long Days. Dong B; Deng Y; Wang H; Gao R; Stephen GK; Chen S; Jiang J; Chen F Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28604637 [TBL] [Abstract][Full Text] [Related]
20. Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants. Yeang HY J Exp Bot; 2013 Jul; 64(10):2643-52. PubMed ID: 23645867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]