These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25721170)

  • 41. Characterization of Cry toxins from autochthonous Bacillus thuringiensis isolates from Mexico.
    Camacho-Millán R; Aguilar-Medina EM; Quezada H; Medina-Contreras Ó; Patiño-López G; Cárdenas-Cota HM; Ramos-Payán R
    Bol Med Hosp Infant Mex; 2017; 74(3):193-199. PubMed ID: 29382486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera.
    Somwatcharajit R; Tiantad I; Panbangred W
    J Invertebr Pathol; 2014 Feb; 116():48-55. PubMed ID: 24412546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm.
    Ocelotl J; Sánchez J; Arroyo R; García-Gómez BI; Gómez I; Unnithan GC; Tabashnik BE; Bravo A; Soberón M
    PLoS One; 2015; 10(12):e0144086. PubMed ID: 26633693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth.
    Sayyed AH; Moores G; Crickmore N; Wright DJ
    Pest Manag Sci; 2008 Aug; 64(8):813-9. PubMed ID: 18383197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression and characterization of a recombinant Cry1Ac crystal protein with enhanced green fluorescent protein in acrystalliferous Bacillus thuringiensis.
    Roh JY; Li MS; Chang JH; Choi JY; Shim HJ; Shin SC; Boo KS; Je YH
    Lett Appl Microbiol; 2004; 38(5):393-9. PubMed ID: 15059210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis.
    Yan F; Cheng X; Ding X; Yao T; Chen H; Li W; Hu S; Yu Z; Sun Y; Zhang Y; Xia L
    Curr Microbiol; 2014 May; 68(5):604-9. PubMed ID: 24375189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacillus thuringiensis delta-endotoxin proteins show a correlation in toxicity and short circuit current inhibition against Helicoverpa zea.
    Karim S; Gould F; Dean DH
    Curr Microbiol; 2000 Sep; 41(3):214-9. PubMed ID: 10915211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes.
    Li J; Ma Y; Yuan W; Xiao Y; Liu C; Wang J; Peng J; Peng R; Soberón M; Bravo A; Yang Y; Liu K
    Insect Biochem Mol Biol; 2017 Sep; 88():1-11. PubMed ID: 28736301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Cloning and superexpression of cry1Ac gene from 20kb DNA associated with Bacillus thuringiensis Cry1A Crystal Protein].
    Hu HY; Xia LQ; Shi HJ; Sun YJ; Gao BD; Ding XZ
    Sheng Wu Gong Cheng Xue Bao; 2004 Sep; 20(5):656-61. PubMed ID: 15973985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cry1Ac Protoxin and Its Activated Toxin from
    Qi L; Qiu X; Yang S; Li R; Wu B; Cao X; He T; Ding X; Xia L; Sun Y
    J Agric Food Chem; 2020 May; 68(21):5816-5824. PubMed ID: 32379448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner).
    Wang B; Wei J; Wang Y; Chen L; Liang G
    Arch Insect Biochem Physiol; 2020 May; 104(1):e21661. PubMed ID: 32011765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.
    Chen W; Liu C; Xiao Y; Zhang D; Zhang Y; Li X; Tabashnik BE; Wu K
    PLoS One; 2015; 10(4):e0126288. PubMed ID: 25885820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).
    Guo Z; Kang S; Zhu X; Wu Q; Wang S; Xie W; Zhang Y
    J Invertebr Pathol; 2015 Mar; 126():21-30. PubMed ID: 25595643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The expression of a recombinant cry1Ac gene with subtilisin-like protease CDEP2 gene in acrystalliferous Bacillus thuringiensis by Red/ET homologous recombination.
    Xia L; Zeng Z; Ding X; Huang F
    Curr Microbiol; 2009 Oct; 59(4):386-92. PubMed ID: 19653036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of a recombinant Cry1Ac crystal protein fused with a green fluorescent protein in Bacillus thuringiensis subsp. kurstaki Cry-B.
    Roh JY; Lee IH; Li MS; Chang JH; Choi JY; Boo KS; Je YH
    J Microbiol; 2004 Dec; 42(4):340-5. PubMed ID: 15650692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac.
    Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC
    Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic analysis of the influence of Cu(2+) on the crystal protein production of Bacillus thuringiensis X022.
    Liu X; Zuo M; Wang T; Sun Y; Liu S; Hu S; He H; Yang Q; Rang J; Quan M; Xia L; Ding X
    Microb Cell Fact; 2015 Oct; 14():153. PubMed ID: 26438125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis.
    Ding X; Luo Z; Xia L; Gao B; Sun Y; Zhang Y
    Curr Microbiol; 2008 May; 56(5):442-6. PubMed ID: 18259812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Degradation of the insecticidal toxin produced by Bacillus thuringiensis var. kurstaki by extracellular proteases produced by Chrysosporium sp.
    Padmaja T; Suneetha N; Sashidhar RB; Sharma HC; Deshpande V; Venkateswerlu G
    J Appl Microbiol; 2008 Apr; 104(4):1171-81. PubMed ID: 18028364
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua.
    Lu K; Gu Y; Liu X; Lin Y; Yu XQ
    J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.