These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25721227)

  • 1. Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa.
    Stepanyan K; Wenseleers T; Duéñez-Guzmán EA; Muratori F; Van den Bergh B; Verstraeten N; De Meester L; Verstrepen KJ; Fauvart M; Michiels J
    Mol Ecol; 2015 Apr; 24(7):1572-83. PubMed ID: 25721227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening.
    De Groote VN; Verstraeten N; Fauvart M; Kint CI; Verbeeck AM; Beullens S; Cornelis P; Michiels J
    FEMS Microbiol Lett; 2009 Aug; 297(1):73-9. PubMed ID: 19508279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa.
    Mlynarcik P; Kolar M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2017 Mar; 161(1):58-67. PubMed ID: 27886280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells.
    Choudhary GS; Yao X; Wang J; Peng B; Bader RA; Ren D
    Sci Rep; 2015 Nov; 5():17315. PubMed ID: 26616387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Surviving Forms in Antibiotic-Treated Pseudomonas aeruginosa].
    Mulyukin AL; Kozlova AN; Sorokin VV; Suzina NE; Cherdyntseva TA; Kotova IB; Gaponov AM; Tutel'yan AV; El'-Registan GI
    Mikrobiologiia; 2015; 84(6):645-59. PubMed ID: 26964354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Pseudomonas aeruginosa Persister/antibiotic tolerant cells.
    Hazan R; Maura D; Que YA; Rahme LG
    Methods Mol Biol; 2014; 1149():699-707. PubMed ID: 24818944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects.
    Barbosa C; Trebosc V; Kemmer C; Rosenstiel P; Beardmore R; Schulenburg H; Jansen G
    Mol Biol Evol; 2017 Sep; 34(9):2229-2244. PubMed ID: 28541480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin.
    Niepa TH; Gilbert JL; Ren D
    Biomaterials; 2012 Oct; 33(30):7356-65. PubMed ID: 22840233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Whole-Cell-Based High-Throughput Screening Method to Identify Molecules Targeting Pseudomonas aeruginosa Persister Cells.
    Liebens V; Defraine V; Fauvart M
    Methods Mol Biol; 2016; 1333():113-20. PubMed ID: 26468104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one.
    Pan J; Song F; Ren D
    Bioorg Med Chem Lett; 2013 Aug; 23(16):4648-51. PubMed ID: 23810498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes.
    Niepa THR; Wang H; Gilbert JL; Ren D
    Acta Biomater; 2017 Mar; 50():344-352. PubMed ID: 28049020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural effects on persister control by brominated furanones.
    Pan J; Ren D
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6559-62. PubMed ID: 24268553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (p)ppGpp-Dependent Persisters Increase the Fitness of Escherichia coli Bacteria Deficient in Isoaspartyl Protein Repair.
    VandenBerg KE; Ahn S; Visick JE
    Appl Environ Microbiol; 2016 Sep; 82(17):5444-54. PubMed ID: 27371580
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Verstraete L; Aizawa J; Govaerts M; De Vooght L; Lavigne R; Michiels J; Van den Bergh B; Cos P
    Microbiol Spectr; 2023 Jun; 11(3):e0497022. PubMed ID: 37140371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa.
    Manfredi P; Santi I; Maffei E; Lezan E; Schmidt A; Jenal U
    Methods Mol Biol; 2021; 2357():161-175. PubMed ID: 34590258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria.
    Perron GG; Hall AR; Buckling A
    Am Nat; 2010 Sep; 176(3):303-11. PubMed ID: 20624092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence.
    Forte Giacobone AF; Oppezzo OJ
    J Photochem Photobiol B; 2015 Jan; 142():232-6. PubMed ID: 25553385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interkingdom signal indole inhibits Pseudomonas aeruginosa persister cell waking.
    Zhang W; Yamasaki R; Song S; Wood TK
    J Appl Microbiol; 2019 Dec; 127(6):1768-1775. PubMed ID: 31487414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HigB of
    Li M; Long Y; Liu Y; Liu Y; Chen R; Shi J; Zhang L; Jin Y; Yang L; Bai F; Jin S; Cheng Z; Wu W
    Front Cell Infect Microbiol; 2016; 6():125. PubMed ID: 27790409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase.
    Hall AR; Iles JC; MacLean RC
    Genetics; 2011 Mar; 187(3):817-22. PubMed ID: 21220359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.