These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25721568)

  • 1. Prediction of the pKa's of aqueous metal ion +2 complexes.
    Jackson VE; Felmy AR; Dixon DA
    J Phys Chem A; 2015 Mar; 119(12):2926-39. PubMed ID: 25721568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the p
    Loudermilk A; Dixon DA
    J Phys Chem A; 2024 Jul; 128(27):5331-5343. PubMed ID: 38950028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the stability constants of metal-ion complexes from first principles.
    Gutten O; Rulíšek L
    Inorg Chem; 2013 Sep; 52(18):10347-55. PubMed ID: 24000817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density Functional Theory Calculation of pKa's of Thiols in Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model.
    Thapa B; Schlegel HB
    J Phys Chem A; 2016 Jul; 120(28):5726-35. PubMed ID: 27327957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa's.
    Ugur I; Marion A; Parant S; Jensen JH; Monard G
    J Chem Inf Model; 2014 Aug; 54(8):2200-13. PubMed ID: 25089727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Calculation of pK
    Thapa B; Schlegel HB
    J Phys Chem A; 2016 Nov; 120(44):8916-8922. PubMed ID: 27748600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory study of the complexation of the uranyl dication with anionic phosphate ligands with and without water molecules.
    Jackson VE; Gutowski KE; Dixon DA
    J Phys Chem A; 2013 Sep; 117(36):8939-57. PubMed ID: 23905705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved pK
    Thapa B; Schlegel HB
    J Phys Chem A; 2017 Jun; 121(24):4698-4706. PubMed ID: 28564543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principle predictions of absolute pKa's of organic acids in dimethyl sulfoxide solution.
    Fu Y; Liu L; Li RQ; Liu R; Guo QX
    J Am Chem Soc; 2004 Jan; 126(3):814-22. PubMed ID: 14733556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2-6, and several hexamer local minima at the CCSD(T) level of theory.
    Miliordos E; Aprà E; Xantheas SS
    J Chem Phys; 2013 Sep; 139(11):114302. PubMed ID: 24070285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies of UO2(H2O)n(2+), NpO2(H2O)n(+), and PuO2(H2O)n(2+) complexes (n=4-6) in aqueous solution and gas phase.
    Cao Z; Balasubramanian K
    J Chem Phys; 2005 Sep; 123(11):114309. PubMed ID: 16392561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory-based prediction of some aqueous-phase chemistry of superheavy element 111. Roentgenium(I) is the "softest" metal ion.
    Hancock RD; Bartolotti LJ; Kaltsoyannis N
    Inorg Chem; 2006 Dec; 45(26):10780-5. PubMed ID: 17173436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study.
    Vallet V; Wahlgren U; Grenthe I
    J Am Chem Soc; 2003 Dec; 125(48):14941-50. PubMed ID: 14640672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations.
    Afaneh AT; Schreckenbach G; Wang F
    J Phys Chem B; 2014 Sep; 118(38):11271-83. PubMed ID: 25076413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-State Energetics of Fe(III) and Ru(III) Aqua Complexes: Accurate ab Initio Calculations and Evidence for Huge Solvation Effects.
    Radoń M; Gąssowska K; Szklarzewicz J; Broclawik E
    J Chem Theory Comput; 2016 Apr; 12(4):1592-605. PubMed ID: 26990105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions.
    Magill AM; Cavell KJ; Yates BF
    J Am Chem Soc; 2004 Jul; 126(28):8717-24. PubMed ID: 15250724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.