These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25721585)

  • 41. Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii.
    Yoo BH; Kim MD
    J Microbiol Biotechnol; 2015 Nov; 25(11):1902-7. PubMed ID: 26323269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae.
    de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA
    Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae.
    Rajakumar S; Ravi C; Nachiappan V
    Metallomics; 2016 Apr; 8(4):453-60. PubMed ID: 26999708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.).
    Shafi M; Bakht J; Hassan MJ; Raziuddin M; Zhang G
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):772-6. PubMed ID: 19294326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using
    Gao Y; Fang L; Wang X; Lan R; Wang M; Du G; Guan W; Liu J; Brennan M; Guo H; Brennan C; Zhao H
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cadmium is an inducer of oxidative stress in yeast.
    Brennan RJ; Schiestl RH
    Mutat Res; 1996 Sep; 356(2):171-8. PubMed ID: 8841482
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of osmotic stress on the derepression of invertase synthesis in nonconventional yeasts.
    Türkel S; Turgut T; Kayakent N
    Lett Appl Microbiol; 2006 Jan; 42(1):78-82. PubMed ID: 16411924
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator.
    Oliveira RP; Basso LC; Junior AP; Penna TC; Del Borghi M; Converti A
    Biol Trace Elem Res; 2012 Jan; 145(1):71-80. PubMed ID: 21809054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low phosphate mitigates cadmium-induced oxidative stress in Saccharomyces cerevisiae by enhancing endogenous antioxidant defence system.
    Kerdsomboon K; Techo T; Limcharoensuk T; Tatip S; Auesukaree C
    Environ Microbiol; 2022 Feb; 24(2):707-720. PubMed ID: 34927334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic analysis of cadmium toxicity in Saccharomyces cerevisiae.
    Zhao Y; Su R; Li S; Mao Y
    FEMS Microbiol Lett; 2021 Aug; 368(15):. PubMed ID: 34370016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional profiling reveals molecular basis and the role of arginine in response to low-pH stress in Pichia kudriavzevii.
    Ji H; Xu K; Dong X; Sun D; Peng R; Lin S; Zhang K; Jin L
    J Biosci Bioeng; 2020 Dec; 130(6):588-595. PubMed ID: 32798135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exclusion of Saccharomyces kudriavzevii from a wine model system mediated by Saccharomyces cerevisiae.
    Arroyo-López FN; Pérez-Través L; Querol A; Barrio E
    Yeast; 2011 Jun; 28(6):423-35. PubMed ID: 21381110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae.
    Muthukumar K; Nachiappan V
    Cell Biochem Biophys; 2013; 67(3):1353-63. PubMed ID: 23743710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Tolerance of Saccharomyces cerevisiae to monoterpenes--a review].
    Liu J; Zhou J; Chen J
    Wei Sheng Wu Xue Bao; 2013 Jun; 53(6):531-7. PubMed ID: 24028054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endoplasmic reticulum is a major target of cadmium toxicity in yeast.
    Gardarin A; Chédin S; Lagniel G; Aude JC; Godat E; Catty P; Labarre J
    Mol Microbiol; 2010 May; 76(4):1034-48. PubMed ID: 20444096
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains.
    Romandini P; Tallandini L; Beltramini M; Salvato B; Manzano M; de Bertoldi M; Rocco GP
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Oct; 103(2):255-62. PubMed ID: 1360381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth and adaptation of Saccharomyces cerevisiae at different cadmium concentrations.
    Minney SF; Quirk AV
    Microbios; 1985; 42(167):37-44. PubMed ID: 3889554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples.
    Li C; Zhang H; Yang Q; Komla MG; Zhang X; Zhu S
    J Agric Food Chem; 2014 Jul; 62(30):7612-21. PubMed ID: 25029482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.