BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25721987)

  • 1. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach.
    Xu X; Ma L
    Sci Rep; 2015 Feb; 5():8614. PubMed ID: 25721987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.
    Wang Y; Ma L; Xu X; Luo J
    Soft Matter; 2015 Jul; 11(28):5632-40. PubMed ID: 26059590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.
    Wang Y; Ma L; Xu X; Luo J
    J Colloid Interface Sci; 2016 Dec; 484():291-297. PubMed ID: 27632074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.
    Nguyen TAH; Biggs SR; Nguyen AV
    Langmuir; 2018 Jun; 34(23):6955-6962. PubMed ID: 29757650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface wettability on transport mechanisms governing water droplet evaporation.
    Pan Z; Weibel JA; Garimella SV
    Langmuir; 2014 Aug; 30(32):9726-30. PubMed ID: 25105726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.
    Pan Z; Dash S; Weibel JA; Garimella SV
    Langmuir; 2013 Dec; 29(51):15831-41. PubMed ID: 24320680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Analysis of a Sessile Evaporating Droplet on a Curved Substrate with an Interfacial Cooling Effect.
    Shen Y; Cheng Y; Xu J; Zhang K; Sui Y
    Langmuir; 2020 May; 36(20):5618-5625. PubMed ID: 32364388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of interfacial energy transport in an evaporating sessile droplet for evaporative cooling applications.
    Mahmud MA; MacDonald BD
    Phys Rev E; 2017 Jan; 95(1-1):012609. PubMed ID: 28208416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Evaporation of Droplet Pairs by a Quasi-Steady-State Diffusion Model Coupled with the Evaporative Cooling Effect.
    Yamada Y; Isobe K; Horibe A
    Langmuir; 2023 Nov; 39(44):15587-15596. PubMed ID: 37867300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature distribution along the surface of evaporating droplets.
    Zhang K; Ma L; Xu X; Luo J; Guo D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032404. PubMed ID: 24730849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens Evaporation on Immiscible Liquid Surface with an Interfacial Cooling Effect.
    Mi M; Jiang J; Zhang S; Dong X; Liu L
    ACS Omega; 2022 Apr; 7(16):14113-14120. PubMed ID: 35559196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-Phase Temperature Mapping of Evaporating Microdroplets.
    Mousa MH; Günay AA; Orejon D; Khodakarami S; Nawaz K; Miljkovic N
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15925-15938. PubMed ID: 33755427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sessile nanofluid droplet drying.
    Zhong X; Crivoi A; Duan F
    Adv Colloid Interface Sci; 2015 Mar; 217():13-30. PubMed ID: 25578408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman thermometry measurements of free evaporation from liquid water droplets.
    Smith JD; Cappa CD; Drisdell WS; Cohen RC; Saykally RJ
    J Am Chem Soc; 2006 Oct; 128(39):12892-8. PubMed ID: 17002384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.
    Chen JN; Zhang Z; Xu RN; Ouyang XL; Jiang PX
    Langmuir; 2016 Sep; 32(36):9135-55. PubMed ID: 27531256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic regulation on evaporation behavior of ferrofluid sessile droplets.
    Wang QY; Zhu GP
    Electrophoresis; 2023 Dec; 44(23):1879-1888. PubMed ID: 37409390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaporation Dynamics of Surfactant-Laden Droplets on a Superhydrophobic Surface: Influence of Surfactant Concentration.
    Aldhaleai A; Tsai PA
    Langmuir; 2022 Jan; 38(1):593-601. PubMed ID: 34967641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal effects of the substrate on water droplet evaporation.
    Sobac B; Brutin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021602. PubMed ID: 23005772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.