These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25722151)
21. Detection and prediction of Botrytis cinerea infection levels in wine grapes using volatile analysis. Jiang L; Qiu Y; Dumlao MC; Donald WA; Steel CC; Schmidtke LM Food Chem; 2023 Sep; 421():136120. PubMed ID: 37098308 [TBL] [Abstract][Full Text] [Related]
22. Fungi and ochratoxin A detected in healthy grapes for wine production. Serra R; Mendonça C; Venâncio A Lett Appl Microbiol; 2006 Jan; 42(1):42-7. PubMed ID: 16411918 [TBL] [Abstract][Full Text] [Related]
23. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. Lorenzini M; Zapparoli G Int J Food Microbiol; 2020 Apr; 319():108505. PubMed ID: 31911210 [TBL] [Abstract][Full Text] [Related]
24. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Wang XJ; Tao YS; Wu Y; An RY; Yue ZY Food Chem; 2017 Jul; 226():41-50. PubMed ID: 28254017 [TBL] [Abstract][Full Text] [Related]
25. Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection. Cilindre C; Jégou S; Hovasse A; Schaeffer C; Castro AJ; Clément C; Van Dorsselaer A; Jeandet P; Marchal R J Proteome Res; 2008 Mar; 7(3):1199-208. PubMed ID: 18205300 [TBL] [Abstract][Full Text] [Related]
26. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. Steel CC; Blackman JW; Schmidtke LM J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852 [TBL] [Abstract][Full Text] [Related]
27. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes. Perutka Z; Šufeisl M; Strnad M; Šebela M Biotechnol Appl Biochem; 2019 May; 66(3):398-411. PubMed ID: 30715757 [TBL] [Abstract][Full Text] [Related]
28. Rapid In-Field Volatile Sampling for Detection of Jiang L; Dumlao MC; Donald WA; Steel CC; Schmidtke LM Molecules; 2023 Jul; 28(13):. PubMed ID: 37446889 [TBL] [Abstract][Full Text] [Related]
29. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone. Bellincontro A; Matarese F; D'Onofrio C; Accordini D; Tosi E; Mencarelli F Food Chem; 2016 Dec; 213():378-387. PubMed ID: 27451194 [TBL] [Abstract][Full Text] [Related]
30. Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity. Lorenzini M; Zapparoli G Int J Food Microbiol; 2019 Jan; 289():223-230. PubMed ID: 30391797 [TBL] [Abstract][Full Text] [Related]
31. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines. Ployon S; Attina A; Vialaret J; Walker AS; Hirtz C; Saucier C Food Chem; 2020 Jun; 315():126233. PubMed ID: 32018078 [TBL] [Abstract][Full Text] [Related]
32. Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering. Di Carli M; Zamboni A; Pè ME; Pezzotti M; Lilley KS; Benvenuto E; Desiderio A J Proteome Res; 2011 Feb; 10(2):429-46. PubMed ID: 20945943 [TBL] [Abstract][Full Text] [Related]
33. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum. La Guerche S; Chamont S; Blancard D; Dubourdieu D; Darriet P Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689 [TBL] [Abstract][Full Text] [Related]
34. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity. Zimdars S; Hitschler J; Schieber A; Weber F J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293 [TBL] [Abstract][Full Text] [Related]
35. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. Marchal R; Warchol M; Cilindre C; Jeandet P J Agric Food Chem; 2006 Jul; 54(14):5157-65. PubMed ID: 16819930 [TBL] [Abstract][Full Text] [Related]
36. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
37. Proteins and enzymatic activities in Erbaluce grape berries with different response to the withering process. Vincenzi S; Tolin S; Cocolin L; Rantsiou K; Curioni A; Rolle L Anal Chim Acta; 2012 Jun; 732():130-6. PubMed ID: 22688044 [TBL] [Abstract][Full Text] [Related]
38. Váczy KZ; Otto M; Gomba-Tóth A; Geiger A; Golen R; Hegyi-Kaló J; Cels T; Geml J; Zsófi Z; Hegyi ÁI Front Plant Sci; 2024; 15():1433161. PubMed ID: 39166245 [TBL] [Abstract][Full Text] [Related]
39. A GC-MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Schueuermann C; Steel CC; Blackman JW; Clark AC; Schwarz LJ; Moraga J; Collado IG; Schmidtke LM Food Chem; 2019 Jan; 270():375-384. PubMed ID: 30174061 [TBL] [Abstract][Full Text] [Related]
40. Effects of the origins of Botrytis cinerea on earthy aromas from grape broth media further inoculated with Penicillium expansum. Morales-Valle H; Silva LC; Paterson RR; Venâncio A; Lima N Food Microbiol; 2011 Aug; 28(5):1048-53. PubMed ID: 21569951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]