These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 25722190)
1. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Ho TV; Iwata J; Ho HA; Grimes WC; Park S; Sanchez-Lara PA; Chai Y Dev Biol; 2015 Apr; 400(2):180-90. PubMed ID: 25722190 [TBL] [Abstract][Full Text] [Related]
3. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Zhao H; Oka K; Bringas P; Kaartinen V; Chai Y Dev Biol; 2008 Aug; 320(1):19-29. PubMed ID: 18572160 [TBL] [Abstract][Full Text] [Related]
4. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342 [TBL] [Abstract][Full Text] [Related]
5. The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. Oka K; Oka S; Sasaki T; Ito Y; Bringas P; Nonaka K; Chai Y Dev Biol; 2007 Mar; 303(1):391-404. PubMed ID: 17204263 [TBL] [Abstract][Full Text] [Related]
6. TGF-beta mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible development. Oka K; Oka S; Hosokawa R; Bringas P; Brockhoff HC; Nonaka K; Chai Y Dev Biol; 2008 Sep; 321(2):303-9. PubMed ID: 18684439 [TBL] [Abstract][Full Text] [Related]
7. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling. Pelikan RC; Iwata J; Suzuki A; Chai Y; Hacia JG J Cell Biochem; 2013 Apr; 114(4):796-807. PubMed ID: 23060211 [TBL] [Abstract][Full Text] [Related]
8. TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development. Sasaki T; Ito Y; Bringas P; Chou S; Urata MM; Slavkin H; Chai Y Development; 2006 Jan; 133(2):371-81. PubMed ID: 16368934 [TBL] [Abstract][Full Text] [Related]
10. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions. Han A; Zhao H; Li J; Pelikan R; Chai Y Mol Cell Biol; 2014 Aug; 34(16):3120-31. PubMed ID: 24912677 [TBL] [Abstract][Full Text] [Related]
11. Tgfbr2 is required in osterix expressing cells for postnatal skeletal development. Peters SB; Wang Y; Serra R Bone; 2017 Apr; 97():54-64. PubMed ID: 28043895 [TBL] [Abstract][Full Text] [Related]
12. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice. Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Chai Y Hum Mol Genet; 2014 Jan; 23(1):182-93. PubMed ID: 23975680 [TBL] [Abstract][Full Text] [Related]
13. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate. Iwata J; Suzuki A; Yokota T; Ho TV; Pelikan R; Urata M; Sanchez-Lara PA; Chai Y Development; 2014 Feb; 141(4):909-17. PubMed ID: 24496627 [TBL] [Abstract][Full Text] [Related]
14. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Parada C; Li J; Iwata J; Suzuki A; Chai Y Mol Cell Biol; 2013 Sep; 33(17):3482-93. PubMed ID: 23816882 [TBL] [Abstract][Full Text] [Related]
15. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice. Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Urata M; Dixon MJ; Chai Y Development; 2013 Mar; 140(6):1220-30. PubMed ID: 23406900 [TBL] [Abstract][Full Text] [Related]
16. Prmt1 regulates craniofacial bone formation upstream of Msx1. Gou Y; Li J; Wu J; Gupta R; Cho I; Ho TV; Chai Y; Merrill A; Wang J; Xu J Mech Dev; 2018 Aug; 152():13-20. PubMed ID: 29727702 [TBL] [Abstract][Full Text] [Related]
17. Alk5-mediated transforming growth factor β signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells. Zhao H; Li S; Han D; Kaartinen V; Chai Y Mol Cell Biol; 2011 May; 31(10):2079-89. PubMed ID: 21402782 [TBL] [Abstract][Full Text] [Related]
18. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. Iwata J; Hosokawa R; Sanchez-Lara PA; Urata M; Slavkin H; Chai Y J Biol Chem; 2010 Feb; 285(7):4975-82. PubMed ID: 19959467 [TBL] [Abstract][Full Text] [Related]
19. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880 [TBL] [Abstract][Full Text] [Related]
20. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice. Iwata J; Hacia JG; Suzuki A; Sanchez-Lara PA; Urata M; Chai Y J Clin Invest; 2012 Mar; 122(3):873-85. PubMed ID: 22326956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]