These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 25722376)
1. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo. Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376 [TBL] [Abstract][Full Text] [Related]
2. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related]
3. Quantitative modeling of transcription factor binding specificities using DNA shape. Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564 [TBL] [Abstract][Full Text] [Related]
4. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
5. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions. Agius P; Arvey A; Chang W; Noble WS; Leslie C PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582 [TBL] [Abstract][Full Text] [Related]
6. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast. Wu WS; Lai FJ BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776 [TBL] [Abstract][Full Text] [Related]
7. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545 [TBL] [Abstract][Full Text] [Related]
8. Widespread effects of DNA methylation and intra-motif dependencies revealed by novel transcription factor binding models. Grau J; Schmidt F; Schulz MH Nucleic Acids Res; 2023 Oct; 51(18):e95. PubMed ID: 37650641 [TBL] [Abstract][Full Text] [Related]
9. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest. Wang X; Lin P; Ho JWK BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433 [TBL] [Abstract][Full Text] [Related]
10. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency. Guo WL; Huang DS Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849 [TBL] [Abstract][Full Text] [Related]
11. Informative priors based on transcription factor structural class improve de novo motif discovery. Narlikar L; Gordân R; Ohler U; Hartemink AJ Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497 [TBL] [Abstract][Full Text] [Related]
12. Mathematical Modeling of Avidity Distribution and Estimating General Binding Properties of Transcription Factors from Genome-Wide Binding Profiles. Kuznetsov VA Methods Mol Biol; 2017; 1613():193-276. PubMed ID: 28849563 [TBL] [Abstract][Full Text] [Related]
13. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans. Brdlik CM; Niu W; Snyder M Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441 [TBL] [Abstract][Full Text] [Related]
14. A graphical model approach visualizes regulatory relationships between genome-wide transcription factor binding profiles. Ng FSL; Ruau D; Wernisch L; Göttgens B Brief Bioinform; 2018 Jan; 19(1):162-173. PubMed ID: 27780826 [TBL] [Abstract][Full Text] [Related]
15. A widespread role of the motif environment in transcription factor binding across diverse protein families. Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164 [TBL] [Abstract][Full Text] [Related]
16. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes. Kuang Z; Ji Z; Boeke JD; Ji H Nucleic Acids Res; 2018 Jan; 46(1):e2. PubMed ID: 29325176 [TBL] [Abstract][Full Text] [Related]
17. Modeling co-occupancy of transcription factors using chromatin features. Liu L; Zhao W; Zhou X Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261 [TBL] [Abstract][Full Text] [Related]
18. Discovering approximate-associated sequence patterns for protein-DNA interactions. Chan TM; Wong KC; Lee KH; Wong MH; Lau CK; Tsui SK; Leung KS Bioinformatics; 2011 Feb; 27(4):471-8. PubMed ID: 21193520 [TBL] [Abstract][Full Text] [Related]
19. DNA methylation patterns of transcription factor binding regions characterize their functional and evolutionary contexts. Rimoldi M; Wang N; Zhang J; Villar D; Odom DT; Taipale J; Flicek P; Roller M Genome Biol; 2024 Jun; 25(1):146. PubMed ID: 38844976 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneity of transcription factor binding specificity models within and across cell lines. Sharmin M; Bravo HC; Hannenhalli S Genome Res; 2016 Aug; 26(8):1110-23. PubMed ID: 27311443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]