These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25723062)

  • 1. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.
    Abbaszadegan M; Yi M; Alum A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):365-71. PubMed ID: 25723062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Migration of main odorous compounds in a water supply system with Huangpu River as raw water in Shanghai].
    Bai XH; Zhang MD; Jia CS
    Huan Jing Ke Xue; 2011 Jan; 32(1):120-4. PubMed ID: 21404674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of pipe material and chlorination on the biofilm structure and microbial communities.
    Zhang X; Lin T; Jiang F; Zhang X; Wang S; Zhang S
    Chemosphere; 2022 Feb; 289():133218. PubMed ID: 34890609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions.
    Kim TK; Moon BR; Kim T; Kim MK; Zoh KD
    Chemosphere; 2016 Nov; 162():157-64. PubMed ID: 27494316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species.
    Wert EC; Korak JA; Trenholm RA; Rosario-Ortiz FL
    Water Res; 2014 Apr; 52():251-9. PubMed ID: 24289950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial repopulation of drinking water pipe walls after chlorination.
    Mathieu L; Francius G; El Zein R; Angel E; Block JC
    Biofouling; 2016 Sep; 32(8):925-34. PubMed ID: 27483985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorine stress mediates microbial surface attachment in drinking water systems.
    Liu L; Le Y; Jin J; Zhou Y; Chen G
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2861-9. PubMed ID: 25359474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs.
    Westerhoff P; Rodriguez-Hernandez M; Baker L; Sommerfeld M
    Water Res; 2005 Dec; 39(20):4899-912. PubMed ID: 16289672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actinomycetes in relation to taste and odour in drinking water: myths, tenets and truths.
    Zaitlin B; Watson SB
    Water Res; 2006 May; 40(9):1741-53. PubMed ID: 16600325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.
    Miller HC; Wylie J; Dejean G; Kaksonen AH; Sutton D; Braun K; Puzon GJ
    Environ Sci Technol; 2015 Sep; 49(18):11125-31. PubMed ID: 26287820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds.
    Klausen C; Nicolaisen MH; Strobel BW; Warnecke F; Nielsen JL; Jørgensen NO
    FEMS Microbiol Ecol; 2005 Apr; 52(2):265-78. PubMed ID: 16329912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Alternative Method for Preservation of 2-Methylisoborneol in Water Samples.
    Fan CC; Chiu YT; Lin TF
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29783625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system.
    Miller HC; Morgan MJ; Wylie JT; Kaksonen AH; Sutton D; Braun K; Puzon GJ
    Water Res; 2017 Mar; 110():15-26. PubMed ID: 27974249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.
    Al-Gabr HM; Zheng T; Yu X
    Sci Total Environ; 2013 Oct; 463-464():525-9. PubMed ID: 23831798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential.
    Su M; Yu J; Zhang J; Chen H; An W; Vogt RD; Andersen T; Jia D; Wang J; Yang M
    Water Res; 2015 Jan; 68():444-53. PubMed ID: 25462751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chlorine and chloramines on earthy and musty odors in drinking water.
    Oestman E; Schweitzer L; Tomboulian P; Corado A; Suffet IH
    Water Sci Technol; 2004; 49(9):153-9. PubMed ID: 15237620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.
    Ginige MP; Wylie J; Plumb J
    Biofouling; 2011 Feb; 27(2):151-63. PubMed ID: 21229405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study.
    Xu J; Huang C; Shi X; Dong S; Yuan B; Nguyen TH
    Sci Total Environ; 2018 Nov; 642():516-525. PubMed ID: 29908510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems.
    Lin H; Zhu X; Wang Y; Yu X
    J Water Health; 2017 Apr; 15(2):218-227. PubMed ID: 28362303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV/chlorine control of drinking water taste and odour at pilot and full-scale.
    Wang D; Bolton JR; Andrews SA; Hofmann R
    Chemosphere; 2015 Oct; 136():239-44. PubMed ID: 26025188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.