These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 25723215)

  • 1. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors.
    Liang Y; Yang L
    Phys Rev Lett; 2015 Feb; 114(6):063001. PubMed ID: 25723215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.
    Yao K; Yan A; Kahn S; Suslu A; Liang Y; Barnard ES; Tongay S; Zettl A; Borys NJ; Schuck PJ
    Phys Rev Lett; 2017 Aug; 119(8):087401. PubMed ID: 28952768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Determination of Band-Gap Renormalization in the Photoexcited Monolayer MoS_{2}.
    Liu F; Ziffer ME; Hansen KR; Wang J; Zhu X
    Phys Rev Lett; 2019 Jun; 122(24):246803. PubMed ID: 31322407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.
    Ulstrup S; Čabo AG; Miwa JA; Riley JM; Grønborg SS; Johannsen JC; Cacho C; Alexander O; Chapman RT; Springate E; Bianchi M; Dendzik M; Lauritsen JV; King PD; Hofmann P
    ACS Nano; 2016 Jun; 10(6):6315-22. PubMed ID: 27267820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle and Optical Properties of Carrier-Doped Monolayer MoTe
    Champagne A; Haber JB; Pokawanvit S; Qiu DY; Biswas S; Atwater HA; da Jornada FH; Neaton JB
    Nano Lett; 2023 May; 23(10):4274-4281. PubMed ID: 37159934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton Polarization and Renormalization Effect for Optical Modulation in Monolayer Semiconductors.
    Pu J; Matsuki K; Chu L; Kobayashi Y; Sasaki S; Miyata Y; Eda G; Takenobu T
    ACS Nano; 2019 Aug; 13(8):9218-9226. PubMed ID: 31394038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes.
    Hartleb H; Späth F; Hertel T
    ACS Nano; 2015 Oct; 9(10):10461-70. PubMed ID: 26381021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations.
    Zhang Y; Xia W; Wu Y; Zhang P
    Nanoscale; 2019 Mar; 11(9):3993-4000. PubMed ID: 30768118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism.
    Botti S; Marques MA
    Phys Rev Lett; 2013 May; 110(22):226404. PubMed ID: 23767740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-aided band gap prediction of semiconductors with low concentration doping.
    Tang Y; Chen H; Wang J; Niu X
    Phys Chem Chem Phys; 2023 Jul; 25(27):18086-18094. PubMed ID: 37381783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
    Grüning M; Marini A; Rubio A
    J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons.
    Kharche N; Meunier V
    J Phys Chem Lett; 2016 Apr; 7(8):1526-33. PubMed ID: 27063190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab.
    Christ A; Tikhodeev SG; Gippius NA; Kuhl J; Giessen H
    Phys Rev Lett; 2003 Oct; 91(18):183901. PubMed ID: 14611284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Effects of Temperature and Oxygen Vacancy on Band Gap Renormalization in LaCrO
    Park J; Saidi WA; Wuenschell JK; Howard BH; Chorpening B; Duan Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17717-17725. PubMed ID: 33831299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-induced many-body renormalization of the electronic properties of graphene.
    Tse WK; Das Sarma S
    Phys Rev Lett; 2007 Dec; 99(23):236802. PubMed ID: 18233392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}.
    Chernikov A; van der Zande AM; Hill HM; Rigosi AF; Velauthapillai A; Hone J; Heinz TF
    Phys Rev Lett; 2015 Sep; 115(12):126802. PubMed ID: 26431003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets.
    Zhang Z; Guo W; Yakobson BI
    Nanoscale; 2013 Jul; 5(14):6381-7. PubMed ID: 23736767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.