These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25723218)

  • 1. Efficient real-time time-dependent density functional theory method and its application to a collision of an ion with a 2D material.
    Wang Z; Li SS; Wang LW
    Phys Rev Lett; 2015 Feb; 114(6):063004. PubMed ID: 25723218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: application to excited-state molecular dynamics simulations.
    Minezawa N; De Silva N; Zahariev F; Gordon MS
    J Chem Phys; 2011 Feb; 134(5):054111. PubMed ID: 21303096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio non-adiabatic molecular dynamics.
    Tapavicza E; Bellchambers GD; Vincent JC; Furche F
    Phys Chem Chem Phys; 2013 Nov; 15(42):18336-48. PubMed ID: 24068257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple time step integrators in ab initio molecular dynamics.
    Luehr N; Markland TE; Martínez TJ
    J Chem Phys; 2014 Feb; 140(8):084116. PubMed ID: 24588157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient formalism for large-scale ab initio molecular dynamics based on time-dependent density functional theory.
    Alonso JL; Andrade X; Echenique P; Falceto F; Prada-Gracia D; Rubio A
    Phys Rev Lett; 2008 Aug; 101(9):096403. PubMed ID: 18851630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio Ehrenfest dynamics.
    Li X; Tully JC; Schlegel HB; Frisch MJ
    J Chem Phys; 2005 Aug; 123(8):084106. PubMed ID: 16164281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of electronic excitations in ion collisions with carbon nanostructures.
    Krasheninnikov AV; Miyamoto Y; Tománek D
    Phys Rev Lett; 2007 Jul; 99(1):016104. PubMed ID: 17678167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of an alanine dipeptide analog: an ab initio molecular dynamics study.
    Wei D; Guo H; Salahub DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011907. PubMed ID: 11461288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics.
    Kühne TD; Krack M; Mohamed FR; Parrinello M
    Phys Rev Lett; 2007 Feb; 98(6):066401. PubMed ID: 17358962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic excitation of Cl- in liquid water and at the surface of a cluster: a sequential Born-Oppenheimer molecular dynamics/quantum mechanics approach.
    Galamba N; Mata RA; Cabral BJ
    J Phys Chem A; 2009 Dec; 113(52):14684-90. PubMed ID: 19728721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of electron transfer on the energy loss of slow He²⁺, C²⁺, and C⁴⁺ ions penetrating a graphene fragment.
    Mao F; Zhang C; Gao CZ; Dai J; Zhang FS
    J Phys Condens Matter; 2014 Feb; 26(8):085402. PubMed ID: 24504049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical transition orbitals: A particle-hole description in real-time TDDFT dynamics.
    Zhou R; Kanai Y
    J Chem Phys; 2021 Feb; 154(5):054107. PubMed ID: 33557544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II.
    Schwegler E; Grossman JC; Gygi F; Galli G
    J Chem Phys; 2004 Sep; 121(11):5400-9. PubMed ID: 15352834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy calculations using dual-level Born-Oppenheimer molecular dynamics.
    Retegan M; Martins-Costa M; Ruiz-López MF
    J Chem Phys; 2010 Aug; 133(6):064103. PubMed ID: 20707557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Born-Oppenheimer potential energy curve: Hydrogen molecular ion with highly accurate free complement method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2013 Aug; 139(7):074105. PubMed ID: 23968070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio excited state properties and dynamics of a prototype sigma-bridged-donor-acceptor molecule.
    Tapavicza E; Tavernelli I; Rothlisberger U
    J Phys Chem A; 2009 Sep; 113(35):9595-602. PubMed ID: 19663389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited state Born-Oppenheimer molecular dynamics through coupling between time dependent DFT and AMOEBA.
    Nottoli M; Mennucci B; Lipparini F
    Phys Chem Chem Phys; 2020 Sep; 22(35):19532-19541. PubMed ID: 32844823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual-level state-specific time-dependent density-functional theory.
    Tokura S; Sato T; Tsuneda T; Nakajima T; Hirao K
    J Comput Chem; 2008 Jun; 29(8):1187-97. PubMed ID: 18161684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.