These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25723414)

  • 41. Electrically tunable liquid crystal waveguide attenuators.
    Cai DP; Nien SC; Chiu HK; Chen CC; Lee CC
    Opt Express; 2011 Jun; 19(12):11890-6. PubMed ID: 21716422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of principal states of polarization of a liquid crystal device to achieve a dynamical modulation of broadband beams.
    Durán V; Clemente P; Lancis J
    Opt Lett; 2009 Aug; 34(16):2423-5. PubMed ID: 19684803
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tunable fiber polarizing filter based on a single-hole-infiltrated polarization maintaining photonic crystal fiber.
    Guo J; Liu YG; Wang Z; Han T; Huang W; Luo M
    Opt Express; 2014 Apr; 22(7):7607-16. PubMed ID: 24718135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coexisting nematic and smectic-A phases in a twisted liquid-crystal cell.
    Ruan LZ; Osipov MA; Sambles JR
    Phys Rev Lett; 2001 May; 86(20):4548-51. PubMed ID: 11384280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liquid-crystal bandpass filter based on the optical rotatory dispersion effect.
    Ye C
    Appl Opt; 2004 Jul; 43(20):4007-10. PubMed ID: 15285090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter.
    Lee KJ; Yeom DI; Kim BY
    Opt Express; 2007 Mar; 15(6):2987-92. PubMed ID: 19532536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrically controlled polarization rotator using nematic liquid crystal.
    Li T; Chen Q; Zhang X
    Opt Express; 2018 Nov; 26(24):32317-32323. PubMed ID: 30650692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mode-evolution-based polarization rotator-splitter design via simple fabrication process.
    Yuan W; Kojima K; Wang B; Koike-Akino T; Parsons K; Nishikawa S; Yagyu E
    Opt Express; 2012 Apr; 20(9):10163-9. PubMed ID: 22535107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wavelength-tunable spectral filters based on the optical rotatory dispersion effect.
    Ye C
    Appl Opt; 2003 Aug; 42(22):4505-13. PubMed ID: 12916615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polarization rotator using a hybrid aligned nematic liquid crystal cell.
    Yang F; Ruan L; Jewell SA; Sambles JR
    Opt Express; 2007 Apr; 15(7):4192-7. PubMed ID: 19532663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrically tunable polarization independent liquid crystal lenses based on orthogonally anisotropic orientations on adjacent micro-domains.
    Lin YH; Wang YJ; Hu GL; Reshetnyak V
    Opt Express; 2021 Aug; 29(18):29215-29227. PubMed ID: 34615036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrotunable 180° achromatic linear polarization rotator based on a dual-frequency liquid crystal.
    Chang LM; Feng TM; Lin KW; Tseng HY; Li CC; Guo DY; Jau HC; Wang CT; Lin TH
    Opt Express; 2022 Feb; 30(4):4886-4894. PubMed ID: 35209461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compact polarization rotator for silicon-based slot waveguide structures.
    Xiao J; Xu Y; Wang J; Sun X
    Appl Opt; 2014 Apr; 53(11):2390-7. PubMed ID: 24787409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable narrow band optical reflector based on indirectly coupled micro ring resonators.
    Emre Kaplan A; Bassi P; Bellanca G
    Opt Express; 2020 Apr; 28(9):13497-13515. PubMed ID: 32403823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimization of electrically tunable VCSEL with intracavity nematic liquid crystal.
    Belmonte C; Frasunkiewicz L; Czyszanowski T; Thienpont H; Beeckman J; Neyts K; Panajotov K
    Opt Express; 2015 Jun; 23(12):15706-15. PubMed ID: 26193549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vertical-cavity surface-emitting laser with a liquid crystal external cavity.
    Xie Y; Beeckman J; Panajotov K; Neyts K
    Opt Lett; 2014 Nov; 39(22):6494-7. PubMed ID: 25490502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-line liquid-crystal microcell wave plates and their application for high-speed, reset-free polarization mode dispersion compensation in 40-Gbit/s systems.
    Acharya BR; Möller L; Baldwin KW; MacHarrie RA; Stepnoski RA; Huang CC; Pindak R; Rogers JA
    Appl Opt; 2003 Sep; 42(27):5407-12. PubMed ID: 14526827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compact tunable multibandpass filters based on liquid-filled photonic crystal fibers.
    Liu Y; Wang Y; Sun B; Liao C; Song J; Yang K; Wang G; Wang Q; Yin G; Zhou J
    Opt Lett; 2014 Apr; 39(7):2148-51. PubMed ID: 24686697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings.
    Dong Y; Jiang T; Teng L; Zhang H; Chen L; Bao X; Lu Z
    Opt Lett; 2014 May; 39(10):2967-70. PubMed ID: 24978249
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quasi-three-level neodymium-doped yttrium aluminum garnet laser emitting at 885 nm.
    Lü Y; Zhao L; Zhai P; Xia J; Li S; Fu X
    Opt Lett; 2012 Aug; 37(15):3177-9. PubMed ID: 22859124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.