These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25723418)

  • 1. Investigation of anti-Stokes Raman processes at phonon-polariton resonance: from Raman oscillation, frequency upconversion to Raman amplification.
    Ding YJ
    Opt Lett; 2015 Mar; 40(5):729-32. PubMed ID: 25723418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers.
    Isaienko O; Robel I
    Sci Rep; 2016 Mar; 6():23031. PubMed ID: 26975881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene.
    Cong X; Wu JB; Lin ML; Liu XL; Shi W; Venezuela P; Tan PH
    Nanoscale; 2018 Aug; 10(34):16138-16144. PubMed ID: 30117506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent anti-Stokes Raman scattering of two-phonon complexes in diamond.
    Kuroda T; Zhokhov PA; Watanabe K; Zheltikov AM; Sakoda K
    Opt Express; 2009 Nov; 17(23):20794-9. PubMed ID: 19997312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers.
    Konorov SO; Akimov DA; Serebryannikov EE; Ivanov AA; Alfimov MV; Zheltikov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):057601. PubMed ID: 15600802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity Engineering of Photon-Phonon Interactions in Si Nanocavities.
    Agarwal D; Yoo J; Pan A; Agarwal R
    Nano Lett; 2019 Nov; 19(11):7950-7956. PubMed ID: 31658421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman lasing and cascaded coherent anti-Stokes Raman scattering of a two-phonon Raman band.
    Jun-ichi T; Keisuke M; Toshirou Y
    Opt Lett; 2006 May; 31(10):1501-3. PubMed ID: 16642152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy.
    Ikeda K; Uosaki K
    Nano Lett; 2009 Apr; 9(4):1378-81. PubMed ID: 19278210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman optical activity by coherent anti-Stokes Raman scattering spectral interferometry.
    Hiramatsu K; Kano H; Nagata T
    Opt Express; 2013 Jun; 21(11):13515-21. PubMed ID: 23736604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering.
    Zhu J; German R; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; van Loosdrecht PHM
    Nanoscale; 2018 Sep; 10(37):17975-17982. PubMed ID: 30226260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide.
    Kuehner JP; Naik SV; Kulatilaka WD; Chai N; Laurendeau NM; Lucht RP; Scully MO; Roy S; Patnaik AK; Gord JR
    J Chem Phys; 2008 May; 128(17):174308. PubMed ID: 18465923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Raman frequency conversion by coherent feedback at low light intensity.
    Chen B; Zhang K; Bian C; Qiu C; Yuan CH; Chen LQ; Ou ZY; Zhang W
    Opt Express; 2013 May; 21(9):10490-5. PubMed ID: 23669906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning near-field optical coherent anti-Stokes Raman microscopy (SNOM-CARS) with femtosecond laser pulses in vibrational and electronic resonance.
    Namboodiri M; Khan TZ; Bom S; Flachenecker G; Materny A
    Opt Express; 2013 Jan; 21(1):918-26. PubMed ID: 23388985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams.
    Bélanger E; Bégin S; Laffray S; De Koninck Y; Vallée R; Côté D
    Opt Express; 2009 Oct; 17(21):18419-32. PubMed ID: 20372572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phononic Cavity Optomechanics of Atomically Thin Crystal in Plasmonic Nanocavity.
    Xu Y; Hu H; Chen W; Suo P; Zhang Y; Zhang S; Xu H
    ACS Nano; 2022 Aug; 16(8):12711-12719. PubMed ID: 35867404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman scattering.
    Hiramatsu K; Okuno M; Kano H; Leproux P; Couderc V; Hamaguchi HO
    Phys Rev Lett; 2012 Aug; 109(8):083901. PubMed ID: 23002745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrically pumped phonon-polariton laser.
    Ohtani K; Meng B; Franckié M; Bosco L; Ndebeka-Bandou C; Beck M; Faist J
    Sci Adv; 2019 Jul; 5(7):eaau1632. PubMed ID: 31309138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: saturation and Stark effects.
    Chai N; Lucht RP; Kulatilaka WD; Roy S; Gord JR
    J Chem Phys; 2010 Aug; 133(8):084310. PubMed ID: 20815572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes.
    Song D; Wang F; Dukovic G; Zheng M; Semke ED; Brus LE; Heinz TF
    Phys Rev Lett; 2008 Jun; 100(22):225503. PubMed ID: 18643430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.
    Mehlenbacher RD; Lyons B; Wilson KC; Du Y; McCamant DW
    J Chem Phys; 2009 Dec; 131(24):244512. PubMed ID: 20059084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.